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Summary

Numerical modeling of tsunami propagation at the coastal zone has been a daunt-
ing task since high accuracy is needed to capture aspects of wave propagation in
the more shallow areas. For example, there are complicated interactions between
incoming and reflected waves due to the bathymetry, the run-up and run-down
flooding phenomena at the beaches or (other) man-made structures that form the
coastline, and intrinsically nonlinear phenomena of wave propagation. Numerical
modeling of tsunamis with nested methods in shallower areas is computationally
expensive and difficult to use in the operational practice. Meanwhile, if a fixed
wall boundary condition is used at a certain shallow depth contour, the reflection
properties can be unrealistic. To alleviate this, we develop a so-called effective
boundary condition as a novel technique to predict tsunami wave run-up along
the coast and offshore wave reflections.

The general idea of the effective boundary condition is as follows. From the
deep ocean to a seaward boundary, i.e., in the simulation area, the wave prop-
agation is modeled numerically over real bathymetry using either nondispersive,
linear, shallow water equations or the dispersive, linear, variational Boussinesq
model. The incoming wave is measured at this seaward boundary, and the wave
dynamics towards the shoreline and the reflection caused by the bathymetry are
modeled analytically. The reflected wave is then influxed back into the simula-
tion area using the effective boundary condition. The location of this seaward
boundary point is determined by assessing when nonlinearity starts to play a role
in the wave propagation.

The modeling of wave dynamics towards the shoreline is achieved by employ-
ing the analytical solution of (i) linear shallow water equations and (ii) nonlinear
shallow water equations. The linear approach is started with the simplest case,
that is flat bathymetry with closed wall boundary condition. Further, a slowly
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varying bathymetry case is considered. The analytical solution is based on linear
shallow water theory and the Wentzel-Kramer-Brillouin approximation, as well
as extensions to the dispersive Boussinesq model. Subsequently, in the nonlin-
ear approach, the coastal bathymetry is approximated by using a mean, planar
beach. The run-up heights at the shore and the reflection caused by the slope are
then modeled based on nonlinear shallow water theory over sloping bathymetry.

The coupling between the numerical and analytic dynamics in the two areas is
handled using variational principles, which leads to (approximate) conservation
of the overall energy in both areas. The numerical solution in the simulation
area is based on a variational finite element method. Verifications of the effec-
tive boundary condition technique and implementation are done in a series of
numerical test cases of increasing complexity, including a case akin to tsunami
propagation to the coastline at Aceh, Sumatra, Indonesia. The comparisons show
that the effective boundary condition method gives a good prediction of the wave
arriving at the shoreline as well as the wave reflection, based only on the infor-
mation of the wave signal at this seaward boundary point. The computational
times needed in simulations using the effective boundary condition implementa-
tion show a reduction compared to times required for corresponding full numerical
simulations.



Samenvatting

Numerieke modellering van tsunami propagatie in de kustzone is een lastige taak
sinds hoge nauwkeurigheid is nodig om aspecten van golfvoortplanting in de meer
ondiepe gebieden vast te leggen. Er zijn bijvoorbeeld ingewikkelde interacties
tussen inkomende en gereflecteerde golven als gevolg van de bathymetrie, de
aan- en oploop met overstromingsverschijnselen op de stranden of (andere) door
de mens gemaakte structuren die de kustlijn vormen, en intrinsiek niet-lineaire
fenomenen van golfvoortplanting. Numerieke modellering van tsunami’s met gen-
este methoden in ondiep water zijn computationeel duur en moeilijk te gebruiken
in de praktijk. Daarnaast kunnen de reflectie-eigenschappen onrealistisch zijn als
een vaste wand randvoorwaarde wordt gebruikt bij een bepaalde dieptecontour.
Om dit te verbeteren ontwikkelen we een zogenaamde effectieve randvoorwaarde
als een betere techniek om tsunami-oploop langs de kust en offshore golfreflecties
te kunnen voorspellen.

Het algemene idee van de effectieve randvoorwaarde is als volgt. Vanaf de
diepe oceaan naar een zeewaartse grens, dat wil zeggen, in de simulatie omge-
ving, wordt de golfvoortplanting numeriek gemodelleerd over echte bathymetrie
met behulp van niet-dispersieve, lineaire, ondiep water vergelijkingen of het dis-
persieve, lineaire, variationele Boussinesq model. De inkomende golf wordt geme-
ten op deze zeewaartse grens, en de golfdynamiek in de richting van de kust en
de reflectie veroorzaakt door de bathymetrie wordt analytisch gemodelleerd. De
gereflecteerde golf wordt dan teruggekaatst in het simulatiegebied met behulp
van de effectieve randvoorwaarde. De locatie van dit zeewaartse grenspunt wordt
bepaald voordat de niet-lineariteit een belangrijke rol in de golfvoortplanting
speelt.

Het modelleren van golfdynamica naar de kust wordt bereikt door gebruik van
de analytische oplossing van in eerste instantie lineaire vergelijkingen voor ondiep
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water en in tweede instantie niet-lineaire vergelijkingen voor ondiep water. De
lineaire benadering wordt gestart met het eenvoudigste geval, dat is een vlakke
bathymetrie met een vaste wand als randvoorwaarde. Verder is een langzaam
variérende bathymetrie beschouwd. De analytische oplossing is gebaseerd op
lineaire ondiep water theorie en de Wentzel-Kramer-Brillouin benadering, evenals
uitbreidingen voor het dispersieve Boussinesq model. Vervolgens worden in de
lineaire benadering de waterdiepten aan de kust benaderd door een strand met
een constante gemiddelde helling. De oploophoogten aan de kust en de reflectie
veroorzaakt door de helling worden vervolgens gemodelleerd op basis van niet-
lineaire ondiep water theorie over hellende bathymetrie.

De koppeling tussen de numerieke en analytische dynamiek in de twee ge-
bieden wordt behandeld met behulp variatieprincipes, wat bij benadering leidt
tot behoud van de totale energie in beide gebieden. De numerieke oplossing
in het simulatiegebied is gebaseerd op een variationele eindige elementenmeth-
ode. Verificaties van de effectieve randvoorwaarde techniek en implementatie
worden gedaan in een reeks van numerieke testcases van toenemende complex-
iteit, waaronder een geval verwant aan tsunami-oploop naar de kustlijn op At-
jeh, Sumatra, Indonesie. Bij vergelijking blijkt dat de effectieve randvoorwaarde
methode een goede voorspelling geeft van zowel de golf die aankomt bij de kustlijn
alsmede van de golfreflectie, terwijl deze methode uitsluitend is gebaseerd op de
informatie van het golfsignaal bij dit zeewaartse grenspunt. De rekentijden die
nodig zijn in simulaties met behulp van de effectieve randvoorwaarde tonen een
reductie ten opzichte van tijden die nodig zijn voor overeenkomstige volledige
numerieke simulaties.



CHAPTER 1

Introduction

1.1 Motivation

The word tsunami is a Japanese word, represented by two characters: tsu, mean-
ing, harbor, and nami, meaning, wave. Tsunami is defined as a set of ocean
waves with very long wavelengths (typically hundreds of kilometres) and rela-
tively small amplitude (a metre or so is typical), so that it often passes by ships
in the deep ocean without anyone on board even noticing. The cause of a tsunami
is any large, sudden disturbance of the sea-surface, such as an underwater earth-
quake, landslide, or volcanic eruption. More rarely, a tsunami can be generated
by a giant meteor impact with the ocean. About 80 percent of tsunamis happen
within the Pacific Ocean’s ”Ring of Fire”, which is an active geological area where
tectonic shifts make volcanoes and earthquakes common.

Historical data of tsunamis record that since 1850 tsunamis have killed more
than 420,000 people and caused billions of dollars of damage to coastal structures
and habitats [Bernard and Robinson, 2009]. Knowing no international boundaries
across the sea, tsunami propagation is a problem with global dimensions and
ranks high on the scale of natural disasters. Most of the casualties were caused
by local tsunamis that occur about once per year somewhere in the world. The
December 26, 2004 Indian Ocean Tsunami (IOT) with a Moment magnitude
(Mw) of 9.2 was likely the most devastating tsunami in recorded history, causing
over 200,000 fatalities within a few hours in 27 countries across the entire Indian
Ocean basin, with tens of thousands reported missing and over one million left
homeless [Kawata et al., 2005, Yalciner et al., [2005].
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Figure 1.1: Left: Boat washed ashore near local businesses in down town Aceh, Sumatra,
following a massive tsunami that struck the area on the 26" of December 2004 (Courtesy
of Michael L. Bak/ US Navy). Right: A tsunami wave crashes over a street in Miyako
City, Iwate Prefecture, in northeastern Japan on March 11, 2011 (Courtesy of Mainichi
Shimbun/ Reuters).

Following the IOT, there has been substantial interest in developing tsunami
mitigation plans worldwide [Synolakis and Bernard, 2006]. Tsunami science and
engineering are inevitable to save human society, industries, and natural environ-
ment. Fortunately, modern observational technologies such as the geographical
information system (GIS), the global positioning system (GPS), and remote sens-
ing techniques have enabled scientists to obtain data of seismic activity, sea floor
bathymetry, topography, and wave height [Zhang et al., [2008]. Together with
these data, another important task is to develop numerical models for more ac-
curate and more reliable forecasting of tsunami propagation through vast oceans
before they strike the coastlines [Meinig et al.| 2005].

Since the wavelengths of tsunamis are far greater than the depth of the ocean,
shallow water equations are widely used in the modeling of tsunamis
2011}, [Liu et al., [2009]. With the simplicity of these equations, tsunami simula-
tions and forecasting can be done in a short time. One feature of these equations
is that the speed of propagation of tsunamis can be approximated by ¢ = \/gh,
that is dependent upon the water depth h and gravity acceleration g = 9.8m/s.
For example, the typical water depth in the deep ocean is around 4000m, so
tsunamis will therefore travel at around 200m/s or more than 700 km/h, the
speed of a passenger jet plane. But as they approach the shoreline and enter
shallower water they slow down because of the shoaling due to the bathymetry.
They begin to grow in height, and decrease in wavelength. It explains why a
tsunami causes major disaster when it hits the shore.

During the IOT, multiple wave phenomena were observed throughout the Sri
Lanka coastal area and along other coastlines; one witness said: "It wasn’t one
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wave, it came in great surges, each one deeper than the last and pushing the
water that had come in before in front of it.” [Horrillo et al., 2006]. Analysis
of the recorded data also shows this fact [Kulikov] [2006]. It indicates the pres-
ence of dispersion, that is the phenomena where wave components with different
wavelengths travel at different propagation speeds. Saito et al|[2011] found that
dispersion effects played a significant role as well in the Japan Tsunami (JT) of
March 2011. In the numerical calculation of the 1993 Okushiri Island tsunami,
Sato| [1996] also found that local tsunami enhancement can be explained by a
series of dispersive waves which ride on the main tsunami front. These dispersion
phenomena will eventually deform the initial wave shape to multiple waves tail-
gating the main wave, and the effect can be significant [Liu et al., (1995, [Heinrich
et al., |1998|.

In tsunami calculations, the
dispersion effects are usually de-
scribed through Boussinesq ap-
proximations [Madsen et al., (1991}
Kennedy and Kirbyl, 2003|. Grilli
et al.| [2007] and Horrillo et al.
[2012] show differences of the wave
elevations between shallow water
and Boussineq approximations for
IOT and North Pacific tsunami

0.6

0.4F

n () [m]
<}
N

simulations. Figure displays 0% 50 100 150 200 250 800 850 400
a snapshot of solitary wave prop- x [m]

agation using the shallow wa- Figure 1.2: Snapshot of a soliton wave propa-

ter equations (solid line) and the gation using the shallow water model (solid line)
Boussinesq model (dashed line). and Boussinesq approzimation (dashed line).
The shallow water equations as

the non-dispersive model retains the initial wave shape, whereas the dispersive
model produces some successive wave tails behind the main one. The compari-
son also displays that the non-dispersive model produces a higher leading wave
amplitude compared to the dispersive one, as is the case in |Ortiz et al.| [2001] and
Mader| [2004].

The shallow water and Boussinesq equations are obtained from the parent
Navier-Stokes equations. A numerical study of the IOT using these three dif-
ferent models has been carried out by Horrillo et al., [2006]. They utilize the
Navier-Stokes equations to provide a frame of reference in validating the shallow
water and Boussinesq equations in a (horizontally) one-dimensional channel case.
Nevertheless, the Navier-Stokes equations are presently too computationally in-
tensive for inundation mapping or operational forecasting, and are generally used
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for free-surface flows of very limited geographical extent [Synolakis et al.l 2008].
In this thesis, both the shallow water and the Boussinesq equations will be used
to simulate the tsunamis and a comparison of these two models will be presented.

It has been mentioned before that another characteristic of tsunamis is that
they often are of low-amplitude as one long wave at their origin. But as they
approach the shoreline and enter shallower water they begin to grow in height
and decrease in wavelength because of the shoaling due to the bathymetry. A
direct calculation of tsunami propagation from its source to the coastal zone using
a single numerical model results in low accuracy in its estimation of tsunami
runup height. In order to capture these shoaling effects in more detail, smaller
grid sizes are therefore needed in the numerical models. Some numerical models
of tsunamis use nested methods with different mesh resolution to preserve the
accuracy of the solution in the coastal area [Wei et al., |2008, Roger et al., 2010,
Titov et al., 2011]. Consequently, longer computational times are then usually
required. Other models often employ an impenetrable vertical wall or transparent
boundary at a certain depth contour as the boundary condition [Zaibo et al., 2003,
Wang and Liu, 2006]. Obviously, the reflection properties of such a boundary
condition can be unrealistic. The main goal of this thesis is therefore the wish
to alleviate this shortcoming by an investigation of a so-called effective boundary
condition (EBC).

1.2 Effective Boundary Condition

A two-dimensional cross-section of the ocean is shown in Fig. The effective
boundary condition (EBC) is assigned at a certain shallow depth contour in the
coastal zone (this will be referred to as the seaward boundary afterward). The
general idea of the EBC is as follows:

e From the deep ocean to the seaward boundary, i.e., in the simulation area,
the wave propagation is modeled numerically over realistic bathymetry us-
ing either the linear shallow water equations (LSWE) or the linear varia-
tional Boussinesq model (LVBM).

e The incoming wave at this seaward boundary is measured (in time), and the
wave dynamics towards the shoreline is modeled analytically (using suitable
approximations).

e The reflected wave is then influxed back into the simulation area using the
EBC.
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x=B x=L

Figure 1.3: Sketch of a two-dimensional cross-section of the ocean. At the seaward
boundary x = B, we measure the wave elevation and velocity, and we want to find a
solution of the nonlinear shallow water equations in the sloping region near the shoreline.

By implementing this EBC technique, the forecasting of the tsunami propagation
and run-up can be done in a shorter time without losing the accuracy since the
coastal area is modeled analytically.

A rapid method to estimate tsunami run-up heights is also suggested by Choi
et al. , by integrating two-dimensional (2D) shallow water model
and an analytical one-dimensional (1D) long-wave run-up theory. A hard-wall
boundary condition is imposed at the seaward boundary and the water wave
oscillations at this boundary line are measured. The maximum run-up height of
tsunami waves at the coast is subsequently calculated separately by employing a
linear approach. In addition to calculating only the maximum run-up height, the
EBC also includes the calculation of reflected waves. Thus, the point-wise wave
height in the whole domain (offshore and onshore area) is predicted accurately. It
is necessary to take into account the interaction between incoming and reflected
waves since subsequent waves may cause danger at later times. [Stefanakis et al.|
discover that resonant phenomena between the incident wavelength and
the beach slope occur. The resonance happens due to incoming and reflected
wave interactions. The October 25, 2010 Mentawai Islands tsunami is studied
and multiple resonant frequencies are observed in this case. |[Ezersky et al.| [2013]
also study the resonant effects for conditions near the Indian coast where the 1945
Makran tsunami was recorded. It is shown that the incident waves are amplified
more than 10 times higher in the onshore region due to the resonant phenomena.

For reasons of simplicity and clarity of exposure, the EBC in this thesis is
derived in a 1D approach in the horizontal. The integration of 2D numerical
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modeling in the simulation area with 1D analytical calculations in the coastal
area can be extended directly under certain limitations. Since a 1D model is
employed in the nearshore area, the 2D effects such as refraction, focusing, etc.,
are not included in the model. Furthermore, near-shore wave breaking of tsunami
waves is also ignored in the present analytical solution of nonlinear shallow water
equations. For waves incident at a small angle to the beach normal, the onshore
problem can be calculated using the analytical 1D run-up theory of the nonlinear
model, and independently the longshore velocity can be computed asymptotically
by using the approach of Ryrie| [1983]. By using 2D numerical modeling in the
open sea towards the seaward boundary line and employing this approach in
the nearshore area, in principle the EBC method can be applied as well in two
horizontal dimensions. Such an approach is expected to be approximately valid
for 2D flow with slow variations along the EBC line.

The shallow water equations (both linear and nonlinear) and Boussinesq
model will be derived here via the variational formulation for surface water waves
of [Miles| [1977]. The numerical solution in the simulation area is based on a vari-
ational finite element method (FEM). The coupling condition between the two
areas is also handled using the variational principles, which leads to (approxi-
mate) conservation of the overall energy in both areas. This condition is required
when the simulation area is approximated with a finite element approximation
yet the nearshore area stays continuous.

The location of the seaward boundary is determined as the point before the
effect of nonlinearity arises, and we examine the dispersion effect at that point
as well. Considering the KdV equation [Mei, 1989|, the measures of nonlinearity
and dispersion are given by the ratios § = A/h and p? = (kh)?, for the wave
amplitude A, water depth h , and wavenumber k. Provided with the information
of the initial wave profile, we can calculate the amplification of the amplitude
and the decrease of the wavelength in a linear approach, and thereafter estimate
the location of the EBC point a priori before the arrival of the wave.

Given the above summary and discussion, the goals in this thesis are as fol-
lows:

(i) To formulate the effective boundary conditions for the linear shallow water
equations (LSWE) and the linear variational Boussinesq model (LVBM).

(ii) To integrate such effective boundary conditions with a finite element treat-
ment in the simulation area and analytical solution in the model area, by
using variational principles.

(iii) To verify our approach in a series of numerical test cases of increasing
complexity.
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1.3 Outline

In the previous section, the background and goals of this thesis have been de-
scribed. Subsequently, the Effective Boundary Condition (EBC) technique was
introduced in a pedagogical fashion. In this short section, we present the contents
of the rest of this thesis.

In Chapter [2, the LSWE and LVBM are derived from their variational prin-
ciples. In addition, the coupling conditions required at the seaward boundary
point, where the simulation area is approximated with a finite element approxi-
mation yet the model area stays continuous, are also derived. This was done in a
1D setting, but the derivation of these coupling conditions in 2D are straightfor-
ward and similar. The EBC formulation is started with the simplest case, that
is for flat and slowly varying bathymetry in the nearshore area. The analytical
solution is obtained by utilizing linear shallow water theory and the Wentzel—-
Kramer—Brillouin (WKB) approximation [Bremmer, 1951, Bender and Orszag},
1978, ivan Groesen and Molenaar, 2007]. Numerical verifications are shown for
various test cases.

Chapter [3| naturally follows the contents of Chapter[2] Furthermore, the EBC
that includes run-up phenomena is formulated by approximating the bathymetry
as a planar beach. The shoreline position and wave reflection in the model area
(sloping region) are determined using an analytical solution of the nonlinear shal-
low water equations (NSWE) following the approach of |Antuono and Brocchini
[2010] for unbroken waves.

Finally, conclusions and an outlook for future work are given in Chapter [4]






CHAPTER 2

LEffective Coastal Boundary

Conditions for Dispersive
Tsunami Propagation

Abstract]

We aim to improve the techniques to predict tsunami wave heights along the
coast. The modeling of tsunamis with the shallow water equations has been very
successful, but often shortcomings arise, for example because wave dispersion is
neglected. To bypass the latter shortcoming, we use the (linearized) variational
Boussinesq model derived by Klopman et al. [2010] and compare its results with
the shallow water model. Another shortcoming is that complicated interactions
between incoming and reflected waves near the shore are usually simplified by
a fixed wall or absorbing boundary condition at a certain shallow depth con-
tour. To alleviate this, we explore and present a so-called effective boundary
condition (EBC), developed here in one spatial dimension. From the deep ocean
to a seaward boundary, i.e., in the simulation area, we model wave propaga-
tion numerically. We measure the incoming wave at this seaward boundary, and
model the wave dynamics towards the shoreline analytically, based on shallow
water theory and the Wentzel-Kramer-Brillouin (WKB) approximation, as well
as extensions to the dispersive, Boussinesq model. The coupling between the

IThis chapter is a revised version of an article submited to the journal Theor. Comp. Fluid
Dyn.
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dynamics in the two areas, respectively treated numerically and analytically, is
handled using variational principles, which leads to (approximate) conservation
of the overall energy in both areas. The reflected wave is then influxed back
into the simulation area using the EBC in a discrete, variational, finite element
formulation. We verify our approach in a series of numerical test cases of increas-
ing complexity, including a case akin to tsunami propagation to the coastline at
Aceh, Sumatra, Indonesia.

2.1 Introduction

The propagation of surface waves over the oceans and in harbors concerns motion
that is largely inviscid, irrotational, and incompressible. The velocity is captured
well with a velocity potential and is divergence free. Such water wave motion is
governed adequately by Laplace’s equation for this velocity potential coupled to
dynamic and kinematic equations for the free surface dynamics [Luke| 1967, Miles|,
1977, Whitham, 1997|. The equations in this classical problem are fully nonlinear
due to the nonlinear free surface boundary conditions, but can be linearized
around a sea state of rest for waves of small amplitude. We are interested in
the propagation of tsunamis to the coast and long waves into harbors in deeper
water, and will therefore limit ourselves to linear wave theory.

Tsunami propagation in the deep ocean is classically calculated with even
simpler equations than potential wave theory: the well-known shallow water
equations [Gill, (1982, Imamura et al.| |2006]. It turns out that the lack of dis-
persion is a shortcoming of (linear) shallow water modeling. During the initial
propagation, waves separate into spectral components with different frequencies
and amplitudes. The leading wave is followed by a train of waves formed in
its tail. Mader| [1974] showed that the shallow water equations often failed to
adequately resolve shorter wavelength tsunamis. Since the potential flow model
is much more complicated than the shallow water model, Boussinesq approxi-
mations play an important role as simpler, more manageable, dispersive wave
models of intermediate complexity, e.g., [Shi et al., 2011, Kirbyl (1997, [Madsen
et al., 1991} Peregrinel 1967|. Furthermore, we have recently advocated the use
of variational or Hamiltonian Boussinesq models [Klopman et al., 2010, [2005]
because such models inherit the original geometric structure of the potential flow
equations or even the incompressible Euler equations [Cotter and Bokhove, 2010].
One of our goals is to show the strength of such variational, dispersive Boussinesq
models.

Numerical models of tsunami propagation from the location of generation to
widespread, surrounding coastlines must deal with details in the generation re-
gion, the proper large-scale long-wave propagation across the oceans to the coast,



2.1 Introduction 11

X=X, x= xTL
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model area simulation area

Figure 2.1: [lllustration of the domain decomposition for our effective boundary treat-
ment. The water depth at rest is given by h = h(x) and the free surface elevation by
n = n(x,t) with horizontal coordinate x and time t. At a position x = B of given,
nonzero depth, information of the incoming wave is determined in time. A theoretical
model is used to obtain the wave reflection within a model area x € [zs, B]. The infor-
mation that accounts for these reflected waves is used into a simulation area x € [B, L]
as an effective boundary condition at the point x = B.

and the subsequent fine-scale run-up and run-down flooding phenomena at the
beaches, cliffs and man-made structures that form the coastline. It is a daunting
task for numerical models to capture such a variation in spatial and temporal
scales. Some shallow water tsunami models therefore approximate the coastline,
or large tracts thereof, with an impenetrable vertical wall at a certain depth con-
tour, say 20m (Zaibo et al. [2003]). Obviously, the reflection properties of such
a boundary condition can be unrealistic. We wish to alleviate this shortcoming
by an investigation of so-called effective boundary conditions, instead of these
solid-wall boundary conditions. In one horizontal spatial dimension, an outline
of the desired mathematical modeling is sketched in Fig. In the deep ocean
for x € [B, L] with horizontal coordinate x an internal boundary point B, de-
noted as the simulation area, we model the wave propagation numerically. In
the coastal zone for x € [xs, B] with end point x5 < B, denoted as the model
area, we model the wave propagation analytically and often approximately be-
cause sufficient numerical resources are lacking in order to capture its solution
numerically. Of course, such lack of resources is really only a problem in two
horizontal dimensions.
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Given the above summary and discussion, the goals in the present paper are
as follows:

(i) To formulate effective boundary conditions (abbreviated as EBC) for the
linear shallow water equations (LSWE) and the linear variational Boussi-
nesq model (LVBM), based on well-known shallow water theory and the
Wentzel-Kramer-Brillouin approximation (WKB), and extensions.

(ii) To integrate such effective boundary conditions with a finite element treat-
ment in the simulation area, and analytical, asymptotic methods in the
model area, by using variational principles. One reason to do so, is that
this approach leads in principle to a compatible numerical scheme with
global energy conservation in the entire simulation and model area (given
suitable boundary conditions at the external boundaries at x = zg and
x = L) for the flat bottom case and the leading order WKB approximation.

(iii) To verify our approach in a series of numerical test cases of increasing
complexity.

Our methodology will be derived in one spatial dimension for reasons of simplicity
and clarity of exposure.

The outline naturally arises from the above goals. In we introduce
the linear shallow water equations (LSWE) and the linear variational Boussi-
nesq model (LVBM) from their variational principles. In addition, we derive the
coupling conditions required when the ”simulation area” is approximated with
a finite element approximation yet the ”model area” stays continuous. In §2.3
and effective boundary conditions are derived. It is required to pinpoint the
coupling conditions derived between the finite element simulation area and the
model area. Classical linear wave theory for shallow water over a flat bottom and
a WKB approximation over slowly varying topography is applied and extended
to the present application. Numerical verifications are shown in and we
conclude in

2.2 Linear Variational Boussinesq Models

2.2.1 Continuum case

Our primary goal is to model the water wave motion in the shallow water close
to the shore analytically, instead of resolving the motion in these shallow regions
numerically. We therefore introduce an artificial, open boundary at some depth
and wish to determine an effective boundary condition at this boundary. To wit,
for motion in a vertical plane normal to the shore with one horizontal dimension,
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this artificial boundary is placed at x = B, = € [z4(t), L], while the real (time-
dependent) boundary lies at 2 = x4(t) with z5(¢t) < B, and time t. For example,
land starts where the depth h = h(x,t) = 0 at © = z4(¢). In general, this water
line is time dependent when the wave moves up and down the beach. After
linearization around a rest depth, xs(t) = x5 becomes fixed. To accommodate
an analytical treatment to find an effective boundary condition, at x = B, we
introduce several simplifications.

Firstly, we will restrict attention to the dynamics in a vertical plane with
horizontal and vertical coordinates x and z. Nonlinear, potential flow water
waves are succinctly described by variational principles of Luke [1967] and Miles
[1977]. Linear counterparts of these principles are readily stated as

T T rL 1 0 1
0 :5/ L[p, ®,n)dt = 5/ / (gbam — 59772 —/ 2|v<1>2dz> dedt  (2.1)
0 0 T —h

with velocity potential ® = ®(z, z,t), potential ¢(x,t) = ®(x,0,t) at the ap-
proximate location z = 0 of the free surface, and the deviation n = n(zx,t) from
this free surface at rest. Time runs from ¢t € [0,7], the rest depth h = h(x),
partial derivatives are denoted by 0; et cetera, the gradient in the vertical plane
as V = (0;,0.)7, and the acceleration of gravity is g.

Secondly, following Klopman et al. [2010], we approximate the velocity po-
tential as follows

D(x,2,t) = ¢(x,t) + F(2)Y(x,t) (2.2)

for a function F' = F(z). Its suitability is determined by insisting that F'(0) =0
such that ¢ is the potential at the approximate location z = 0 of the free surface,
and that the slip flow condition at the bottom boundary z+ h(z) = 0. The latter
kinematic condition yields 9,® + 0,P0,h = 0 at z = —h(x). For slowly varying
bottom topography, this condition is approximated to

(8zq))z:fh(m) = F/(—hW = 0. (23)

Substitution of (2.2) into (2.1)) yields the variational principle for the linearized
Boussinesq equations

T
0=5 /0 Ll mldt

_(5/0 /xs <¢6t77 - 5977 - Qh(8m¢) - ﬁaz¢ax¢ - 50&(633’(,0) — 5’7’¢ ) d%dt,
(2.4)
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where functions S(z), a(z), and v(z) are given by

0 0 0
= = 2 n = 2dz.
B(x) = /—h(x) Fdz, alz) = /_h(I)F dz, and ~(z) /_h(x)(F’) dz( |
2.5

We choose a parabolic profile function F(z;h) = 22/h + 22/h?, in which the z—
dependence is considered to be parametric when rest depth A is sufficiently slowly
varying such that in scaled form h = h(ex) with e < 1 the ratio between vertical
and horizontal changes in the topography. Consequently,

8 2 4

a—15h(a:), B=—zh(z), v=

(2.6)

Thirdly, when we ignore the underlined terms in , sofor f=a=~v=0,
the linearized shallow water equations are obtained as limiting system. The
advantage of the shallow water equations is that these permit exact or asymptotic
solutions on flat and slowly varying bottom topography, respectively.

Next, we take variations of but a priori divide the domain into two
intervals, = € [zs,B] and = € [B, L], such that we are forced to consider the
boundary conditions that couple these two intervals. The resulting equations
should, of course, equal the equations emerging when directly considering the
entire domain x € [z, L]. The result of such variations, while using endpoint
conditions én(z,0) = én(z,T) =0, is

-/ i / (0 + 02(43,0) + 0,(30,1))56 — (@16 + g

+ (02(0,0) + 0 (BD26) — 7100 ) da
- (haz¢ + 53;%&)!35:37 6¢1:B* - (04(9:1:1# + 58x¢)|z:375¢\z:37
+ (ham(b + 68$¢)’$:m35¢’:c:$s + (aascw + ﬂa$¢>‘$:zséw‘m:$s
L
4 [ ((0m+ 0,(10,6) + 0,(30.1)56 — (@16 -+ gn)on

B
+ (02(0,0) + 0 (B026) — 1) 00 ) da
+ (hDpd + BOY) |y 60|+ + (02 + BOrD)| s g+ OV | o+

— (02 + B0 omr.000=r, — (a0u1) + B026) lo=1 6 lu=r |t
(2.7a)
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T B
= [ 1] (@0 +0.00.0) + 0(80))66 = (016 + mism
+ (0:(ad,) + 0:(80,6) — 1) v ) da
L
4 [ (0 + 01(10,0) +0,(60,1))56 — (@16 -+ gn)on

B
+ (00(00s0) + 0 (BOx0) — W)aw) dx] dt.
(2.7h)

The two boundary terms at each location z = x5, * = B¥ and « = L concern
the velocity across the depth. In the original variational principle , this
would be V& - 71 as a function of z with 7 the outward normal at the respective
vertical boundary, here 72 = #+(1,0)7. For a hard wall at 2 = L, for example, the
horizontal velocity must be zero at every depth. Due to the approximation ,
only two degrees of freedom over depth remain. The variations result thus in two
boundary conditions at each location r = x5, * = BT and z = L. Assuming
continuity at x = B, the boundary terms there cancel pairwise such that

(hax(b + Baxw)’sz* 6¢‘x:B* - (haw¢ + 68$¢)’m:B+5¢‘w:B+ = 07 (2.8&)
(06(911/1 + /Ba$¢)‘x23761/}’([:37 - (aax¢ + 6ax¢)‘x:B+5w‘x:B+ = 0. (2'8b)

The boundary terms at x = x4, L are either zero for a solid wall, or transparent
for the outgoing characteristic. Finally, given such boundary conditions and that
the variations d¢, J1, on are arbitrary in (2.7b]), we find the equations:

g + gn =0, (2.9a)
o + ax(hax¢) + ax(ﬂaww) =0, (29b)

for x € [xs, B] and = € [B, L]. For the above choice of F, constant depth h, wave
frequency w and wave number k, the dispersion relation following from is
given by

/32 k2

e (2.10)

w? = ghk? [1 —

Without the underlined terms, the linear shallow water equations remain as limit-
ing system, without wave dispersion as we note from . Dispersion diagrams
for the full potential flow, the linear variational Boussinesq model (LVBM), and
the linear shallow water equations (LSWE) are shown in Fig. The LSWE
dispersion relation (dotted-dashed line) is a linear relation between w and k,
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Figure 2.2: We combined the scaled spectrum (dashed line) of an initial profile in
Figl2.5 the exact dispersion relation for potential flow and LVBM dispersion relation
(solid and dotted lines are on top of one another), and LSWE dispersion relation (dotted-
dashed line) in a plot of frequency w versus wave number k.

showing that each wave number will travel with the same constant speed \/gh.
The LVBM dispersion relation and the exact dispersion relation for po-
tential flow (dotted line and solid line respectively) are on top of one another,
showing that the long waves of present interest can be modeled well by LVBM.
The dashed line is a scaled spectrum of an initial profile that will be used in
Section Each wave number will travel with its own speed following from the
dispersion relation.

2.2.2 Semi-discrete case

The region x € [B, L] will be approximated using a classical Galerkin finite
element expansion. We will use first order spline polynomials on N = N}, elements
with j = 1,..., N + 1 nodes. The variational structure is simply preserved by
substituting the expansions

n(w,t) =¢;(t)pi(x), Yn(w,t) =;(t)pi(x) and np(z,t) = n;(t)p;(2)
(2.11a)

into (2.4) for x € [B, L] concerning Nj—elements and (N + 1)-basis functions ¢;.
We used the Einstein summation convention for repeated indices.
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To ensure continuity and a unique determination, we substitute

¢z, 1) =d(z, 1) + ¢1(H)p1 (@), (2.11b)
U@, t) =0 (x,t) + i (D (@), (2.11c)
n(xvt) :ﬁ(.’lf,t) +771<t)901(x)7 (211d)

with 1 the basis function in element 0 for = € [xs, B] and with »(B, t) =n(B,t) =
¥(B,t) = 0. For linear polynomials, use of (2.11)) into (2.4]) yields

T
. 1 1 1 1
0= 5/ [Mkl¢k77l - 59Mkl77k771 - §Skl¢k¢>l - §Akz¢k¢l — Brpdr — inﬂ/Jk?/)z-F
0

B
[ (00m= Sor — 5h(0:0) = S0(@0) - Bl0.0)0s) — 502
(2.12a)

T
= / [(Mkzﬁl — St — Brath))d¢n — (Myir + gMyami)om — (Apthy + Brady + Gratb) 0ty
0

B
b [ (0 + 02(10,0) + 0,(50,))55 ~ (06 + g5

s

+ (0:(a0,) + 0, (8026) — 71£)6% ) da

B
+ [ (@ + 02(10,0) + 0,(50,)) 01661 — (016 + gn)indm,

s

+(02(0021) + 0(80,0) = ¥) 1501 ) da

— (h9:6 + B0,v) |- 061 — (@D + BO,0) |- 001 |,
(2.12Db)

where we introduced mass and stiffness matrices My, Sk;, Awi, Bri, Gii, and used
endpoint conditions 07, (0) = 0mx(7) = 0, connection conditions 67(B,t) =
6¢(B,t) = 64)(B,t) = 0, and no-normal through flow conditions at z = zg, L.
The matrices in are defined as follows

L L L
My = / orpdr, Sk = / hOyp10zpidx Ay = / 0101,
B

B B
(2.13a)

L L
By = /B B0uprdapdn,  and  Gy= /B Yoo, (2.13b)
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Provided we let the size of the zeroth element go to zero such that the underline
terms in (2.12b)) vanish, the equations arising from ([2.12)) are

Mg — Sriér — Buthy — 6x1(h0y¢ + BOyY))|p- =0 (2.14a)
My, + gMmy, =0 (2.14b)
A1 + Bradr + G — 01 (a0 + B0 P)| g~ =0 (2.14c¢)

with Kronecker delta symbol d;, one when k = [ and zero otherwise, and the
equations for © € [z4, B]. Taking this limit does not jeopardize the time
step, as this zeroth element lies in the continuum region, in which the resolution
is infinite.

2.3 Effective Boundary Conditions: Shallow Water
Equations

2.3.1 Flat Bottom Case ~-WKBO0

We start with the shallow-water limit of in which the bottom is flat for
x € [zs, L] and, effectively, ©» = 0. It is then possible to calculate the exact
solution in part of the domain [xs, B] and specify the exact boundary condition
at © = B given the approximate, numerical finite element solution in z € [B, L].
The numerical errors arising in the simulation area will therefore remain present.
When time is not discretized, our mixed numerical and analytical approach en-
sures that the energy in the total domain is preserved.

The Riemann invariants of the linear shallow water equations can be found
by taking the spatial derivative of the Bernoulli equation in , such that the
velocity u = 0,¢ emerges, and combining it with the continuity equation. One
thus obtains two uncoupled linear advection equations

Oi(hu + en) £ cdp(hu£en) =0 (2.15)

with eigenvalues +£c¢ = ++/gh, and outgoing and incoming Riemann invariants.
These have solutions

hu + cn = ky(x — ct) and hu —en = k_(x + ct). (2.16)

The first equation in (2.16) requires a boundary condition at z = x4, the second
one a boundary condition at x = B or a symmetry argument. For a domain with
a vertical wall at x = x4, symmetry arguments can be used to determine that

Ky(x —ct) = —k_(2z5 — x + ct), (2.17)
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such that hu = hd,¢ = (k_(z+ct) — k_ (225 —x+ct)) /2 is indeed zero at x = xs.
From ({2.14), we note that we require the mass flux hu at © = B~. We determine
the incoming characteristic at x = B by observing and storing

h(B+ct) = (b6 — en)loepr (2.18)

using the finite element solution at x = BT. Note that u = 9,.¢ is not continuous
at x = B and we chose its right limit. The incoming wave is reflected at = = x;
and arrives later back at x = B with a delay time A7 = 2(B — z4)/¢, and we

thus have to store the values k_(B + ct) from the current time till A7 earlier,
i.e., t € [t — A7, t]. Hence, we can specify the flux required in (2.14)) as:

(h0z¢)|s=p- = (k—(B +ct) — k_(2zs — B+ ct)) /2 (2.19)

using the stored values from (2.18)).
From (2.16]) and 0;¢ = —gn in (2.94)), it follows that the free surface deviation
and the velocity potential satisfy

n= %c(mr(x —ct) —k_(z+ct)) and ¢ =F(x—ct)+ F_(z+ct) (2.20)

with p p

F, = @mr(x —ct) and F = 2—02/{,(:6 + ct). (2.21)
Using the above expressions, we note that the influx and observation operators
O and 7 are given by

O(¢) = 01 + €O = —2gNin. and
Z(¢) = Orp — cOxp = —2gNye i (2.22)

with 9ine = —k_(x +ct)/(2¢) and yepy = Ky (x —ct)/(2c). Hence, we can rewrite

-
(h8$¢)|a::B* = —0(77 - 277T8fl)|x:B*' (223)

Since n by construction is continuous in x = B, one can also use the finite element
solution n; for n in instead. In the numerical validation, we denote this
approach by WKBO. Note that it was our goal to determine hd,¢|,—pg- for use
in the finite element model . We achieved this goal in or using
the r_(-)-function defined in (2.18).

We remark the following on the implementation. Consider, say, that we start
with a quiescent state in the region x € [z, B] at the initial time. At a given time
we need to know k_(q) for g € [B + ct,2xs — B + ct], or for Np + 1 values when
using a fixed, discrete time step At = 2(B — x5)/(cNp) in a specific time step
integrator. This time step At needs to be sufficiently small to ensure stability
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of the finite element solution. Yet such a fixed time step allows us to store only
Np+1 current and past values of k_ (B + cnyAt) with integer index n; in a fixed
length array, which oldest stored value of x_ is replaced with the current value
after every time step. This can be done cyclically. Alternatively, for a variable
length time integrator one would need to interpolate between the stored values of
k—_. For a multi-step time integrator it is advised to store also values of k_(B+ct)
at intermediate times used in the time step integration.

2.3.2 WKB approximation -WKB1 & WKB2

When the bottom topography is slowly varying, it is possible to solve the equa-
tions in the shallow part = € [xs, B] of the domain asymptotically, using the
Wentzel-Kramer-Brillouin (WKB) approximation Bender and Orszag| [1978], Brem-
mer| [1951], van Groesen and Andonowati [2011], van Groesen and Molenaar
[2007], Hinch| [1991], [Whitham, [1997]. Consider the in-situ phase speed to be a
slowly varying function of space: ¢ = y/h(ex) = c¢(ex). Consequently, dc/dx = e
(with ¢ = de/d(ex)) scales as O(e). The variational principle for the shallow wa-
ter equations, cf. , can then be rewritten by rearranging the kinetic energy
term for x € [zg4, B] as follows

T
. 1 1
0 25/ Myorpm — *ngl"?knl - *Skl¢k¢l+

Bu(v/c0) + 2C¢2c'2)d:p] dt.
(2.24)

Variation of (2.24]) yields the finite element discretization (2.14]) (momentarily
for ¢ = 0) with the same mass flux as coupling term, and the equations

/(bam—gn—( (Vo) = o

2
Ohp+gn=20 and 9o + /Oy (08 (\fqﬁ)) (c +2cd’)gp.  (2.25)

By defining new variables ¢ = y/c¢ and p = \/cgn, and a new coordinate o =
— fxB d(¢/c(eC) such that 0, = cd,, one obtains the system

Ooq+p=0 and op + 0y0q = —bq, (2.26)

in which b = —e2(¢’? 4 2¢¢) /4 scales as O(2).

The solution of this linear equation consists of the solution pg to the homo-
geneous problem plus a particular solution p, , such that p = pyg + p,. The
homogeneous solution satisfies as in the flat bottom case again two linear advec-
tion equations. In the transformed variables (v = 0,q, pyr) and coordinates (o, t)
these read

O(v+py) £ 0,(v+py)=0. (2.27)
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Their solutions are
v+pg=ki(o—t) and v—pyg=rk_(oc+1)

1
such that py = §(I€+(O' —t) — k(o +1)), (2.28)

and these also serve as leading order solutions of (2.26]) at O(1) in e. The par-
ticular solution is solved iteratively p, = p; with as zeroth iteration pp = 0 and
as first iteration p; satisfying

(Or — 05)(0r + 05 )P1 = bpm, (2.29)

as following from substitution of p = py+p; into (2.26) and ignoring the bp; term.
To aid finding the solution, we rewrite (2.29) by introducing a new intermediate
variable r1 as

(O — 0y)r1 =bpyg  and  (0p + 0y)p1 = 71. (2.30)

Given the solution pg in ([2.28]), the solution for 7 is

1 o 71
r= k(o + t)/O b(eC)d¢ —/0 55+ (28 = (0 +1))b(eB)dB. (2.31)

Hence, the solution for p; in (2.29) becomes
71 B
p=Galo =0+ [ 5n- (25— (0 -0) [ beyacas
0 0
(o Y 1
-/ /0 5+ (28— (27— (0 = 1) )bleB)dpdy,  (2.32)
in which the functions Go is determined by the initial condition p;(c,0) = 0
as we have rest flow in the region x € [zs, B], or equivalently o € [0, 0, ] with
Op, = — faf d(/c(eC). Hence, what remains is to determine x_ and Gg given the
initial conditions, and the inflow of information at ¢ = 0 for time ¢ > 0.

Firstly, consider the case with an open boundary and for simplicity a flat
bottom for x < xg such that there is no reflected wave at leading order. Hence,
ky+ = 0. We use G2 such that p;(0,0) = 0. The total, asymptotic solution then
becomes

o B
p=aven=—zu-+0+ [ 5e(28--0) [ Wedcs (239

It is the sum of the incoming wave in the first term, and the wave reflection due
to the slowly varying topography in the second term. As in the flat bottom case,
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the incoming wave is determined as the boundary condition at o = 0" from the
finite element solution for the first Riemann invariant

i (t) = (v = pa)|omor = (cOx(Vch) — gv/en) | pep+- (2.34)

Assuming that ¢/(ex) = 0 or at least of O(e?)at * = B ensures that the

homogeneous solution holds locally, such that it follows from ([2.28) and ([2.33))
that

Plo—o = %(#(—t) — K(t))
t B
:_;“(t)_/o ;"‘(QBH))/O b(e)dCdp. (2.35)

This determines <4, and thus

Ve, /e
(h9:9)la=pp- = 000 = 5(

= ;/gf(m_(t)—/otﬂ_(Zﬁ—i—t) /Oﬁb(eg“)dgdﬁ), (2.36)

where we used <4 to denote that we really couple the homogeneous solution on
a local plateau in the topography (of infinitesimal width) to the WKB solution.
Alternatively, employing the approach with observation and influx operators and
the finite element solution, we find as in but extended with the reflection

part in (2.33)) that

(h0z®)|pep- = —c( = 20ref1)|z—pB-

B
— —ep = Y / (28 + 1) /0 b(e¢)dCdB, (2.37)

Fp(—t) + k(1))

since = p/(gy/c). Also note that we have used the full O(e?) expression here.
The reflection term in has a nice interpretation. An input k_(t) = 0(t —tg)
at o = 0, concerning the second term in , produces a reflection at that same
point ¢ = 0 given by

(t—to)/2
/0 b(eC)dc, (2.38)

which is the result of the reflection of the right propagating wave until the point
o = (t —tp)/2. In other words, the reflection is influxed back after a delay time
t —top = 20. Hence, o serves as a scaled and shifted time coordinate. In the
numerical validation, we denote this approach by WKBI1.

Secondly, we consider the harbour case with a fixed wall at © = z4 or, equiv-
alently, at 0 = 0,, = — ff: d¢/c(eC). Again, G2 is used to satisfy the quiescent



2.4 Modelling Effective Boundary Conditions: Boussinesq Equations
-DWKBO0, DWKB1 & DWKB2 23

initial condition. Furthermore, 2v = k4 (0 —t) + k_(o + t) should be zero at
0 = 0y, hence k4 (0 —t) = —k_(20,, — (0 — t)). Note that we did not include
the higher order correction of the solution in the determination of the primary
reflected wave k_, which introduces a small error. The total, asymptotic solution
thus becomes

o

p=— (K,(2ozs —(o0—1t))+k_(0+ t)) /2 + / %/ﬁ, (28— (o —1)) /OB b(e¢)d¢d3

o—t

- /(,: /0’* %“* (28— (29— (0 =) )b(eB)dBdr. (2.39)

The first term on the right hand side is of order one, the second term of O(e?)
and the last, underlined term is due to the reflection of the reflected incoming
signal from the vertical wall. Its size depends on the total change in depth and
thus the total reflection of the incoming signal, as estimated in the second term,
from z = B to the vertical wall at x = x5. Per case considered, one has to assess
whether the underlined term in(2.39) can be neglected because it is of O(€?),
or not. In case we assume that ¢/(ex) = 0 at z = B, we can neglect this term.
Following the same reasoning as in the previous paragraph for the open boundary,
we find the mass flux

(haw¢)|x=3— = —0(77 - 277refl)|x:B—

— o - f (w2 +0) + [ (26 41) / " bec)dcas).

(2.40)

In the numerical validation, we denote this approach by WKB2. Note that it was
our goal to determine h0,¢|,—p- for use in the finite element model (2.14). We
achieved this goal for the EBC over slowly varying topography in (2.36)) or (2.37)

and (22.40]) using the k_(-)-function defined in ([2.18]).

2.4 Modelling Effective Boundary Conditions: Bous-
sinesq Equations -DWKB0, DWKB1 & DWKB2

In this section, we largely follow the same procedure as in the previous section,
but now add dispersive effects to the wave motion. Dispersion implies that the
propagation speed of a wave increases with wavelength. Dispersion cannot be
neglected when we are interested to follow traveling waves from the deep ocean
to the shallow areas near the coast. This is evident for relatively short waves like
wind waves, but even for long tsunami waves dispersion will eventually deform
the initial wave shape. It leads to low-amplitude tails of shorter waves behind the
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main wave with its long-wave components. Leading order dispersion effects are
included via the linear variational Boussinesq model derived for the continuous
case in and (2.9a)), and for the semi-discrete case in (2.12)) and (2.14)). Hence,
the underlined terms are now included.

Relative to the analysis for the LSWE, we made the following changes: (i)
The observation and influx operator are updated to include dispersive effects
approximately for long waves. Hence, the incoming wave 7, can be determined.
(ii) The group velocity is used to weigh the reflected wave signal ;s following
an approach by |[Lie et al. [2014]. (iii) Given 7;,., we determine Nrefl USing the
flat-bottom or WKB approaches in shallow water with one change: we use the
phase speed ¢, of the peak wave instead of ¢ = \/gh.

2.4.1 Observation and influx operators

Firstly, we extend the operators to include some effects of the dispersion in the
LVBM. The LSWE observation operator (2.22) led to the transparent or effec-
tive boundary condition , or for the LSWE. Since an exact
transparent-influx effective boundary condition (EBC) for the LVBM is unknown,
we use an approximation for the LVBM observation operator as follows

Ov(6,) = (016 + Dyt + ¢ -0.0). (2.41)

The first two terms are the same as for the LSWE. The third term with the
additional function v gives improvement for dispersive waves. It is derived by
considering a harmonic analysis for the LVBM in the case where «, 3,7 and
h are constants. By combining the two dynamic equations after substitution of
&, 1,1 o eFr Wt with imaginary number i2 = —1, wave number k, and frequency
w; one finds that (w + ck)¢ — gBk*)/(w — ck) = 0. When we focus on left
propagating long waves with w ~ —ck, this relationship becomes (w + ck)¢p +
9Bk /(2¢) = 0, which then leads to the approximate observation operator (2.41)).
A spectrum of the initial condition used for later simulation as in Fig. [2.2]justifies
this focus on long waves.

Motivated by the effective boundary treatment for the LSWE in , we
define LVBM observation and influx operators to measure the elevation of waves
and impose the reflected wave signal back into the modeled part of the domain
as

Ov (¢,v) = —2gMinc(t) and

Ty (6,4) = (00 — cOp — ¢

%83611}) = —anrefl(t)' (242)
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From a rearrangement of the influx operator Zy , we derive that

2
h8x¢ = %890(;5 = —(077 - 2cn'refl + gaﬂﬁ) (2'43)

Given 7;n. using this new observation operator in combination with 0;¢p = —gn,
we use the results derived for the LSWE in the cases WKB0, WKB1, or WKB2
to define 7,.f;. For the total mass flux required in (2.14) at + = B~, we thus
obtain:

(h0e+ B0 = —(en— 30 + et (244)

in which 7 is continuous at * = B so we can use the finite element value 7y,
and in which we use the finite element solution to obtain 0,1 (we chose its right
limit) because we have not solved it in the model area x € [z4, B]. Likewise, we
derive an effective boundary condition for the weighted velocity term in ([2.14])
/82
- %)axw”ac:B* + 2(Cﬁ77refl/h)‘z:B*‘
(2.45)
The speed ¢ in the last term of (2.44)) and (2.45)) needs to be adjusted to
account the dispersive properties of model. Following |Lie et al.|[2014], we define
a function f(t) to influx s(t) = 21, at © = B~ in both (2.44]) and (2.45)) in the
following way. Using the point generation case, the function f (¢) is the inverse
Fourier transform of

(Oéaxw + ﬁax(ﬁ)’;r:B* = _(C/BTI/h - (a

F (@) = V(K1 (@))5 (@), (2.46)
where § (w) is the Fourier transform of the desired signal s (¢) using the convention

s(t) = / sw)e™dw  and 5 (w) = — / s (1) et dt.

T or

The group velocity is defined by V, = dw/dk and K is the inverse of dispersion
function Q:
w=0Q(k)e k=K (w)

For monochromatic waves, we obtain the expression

f (@) = 2¢cqnyresr, (2.47)

where ¢4 is the group velocity of the related wavenumber k. The numerical
solutions of LVBM show that a weighing with the group velocity yields better
results as plotted in Fig. We generate a monochromatic wave at « = Okm,
period 100s, above 1000m depth, and ramp up the amplitude till it is 1m within
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Figure 2.3: A monochromatic wave of amplitude 1m is generated at x = 0km with phase
speed ¢, (dashed line) and group velocity Vg, (solid line) as the weighing factor.

the first ¢ = 200s. The result of using group velocity ¢, as the weighing factor is
displayed by the solid line, which gives a proper amplitude of 1m, while the result
with the dashed line uses phase velocity c,. This finding is in accordance with
the result of Lee et al. [2001] and Kim et al. [2007]. For polychromatic waves, the
group velocity of each corresponding frequency must be multiplied appropriately
in the Fourier space as in . In the shallow water approximation, the phase
speed and group velocity coincide and we therefore directly get the result as in
2-23).

Finally, since the LVBM is a dispersive model, where waves with different
wavelength will travel at different phase speed, instead of ¢ = /gh(z) in LSWE,
we take

(@) = C(kp (z),h(2)) (2.48)

in the model area, in which C (k,h) is the phase speed for wave number k at
depth h, and k, (z) is the wave number of the wave with the peak frequency
wp at depth A (z), so Q(k, (x),h(x)) = w, for all . The dispersion relation 2
and the associated phase speed C' can also be the exact expression for potential
flow water waves, or any approximation such as the LVBM used presently. This
update is used when we relate 7,¢f; to 7in using the relevant expressions from
WKBO0, WKB1, or WKB2 for the flat bottom, slowly varying bottom case with
an open or closed right boundary, respectively. These dispersive counterparts
will be denoted by DWKBO (flat bottom), DWKBL1 (open right boundary) and
DWKB?2 (closed right boundary).



2.5 Numerical Validation 27

2.5 Numerical Validation

A series of validation examples of increasing complexity will be considered. Firstly,
a verification of the effective boundary condition is done for the LSWE in a do-
main with a flat bottom. These are then compared with verification of advanced
effective boundary treatment for the LVBM. Secondly, we validate the effective
boundary condition in a domain with a slowly varying bottom and an open flat
bottom domain beyond x = x5. These results are compared directly with simula-
tions using the advanced effective boundary treatment for the LSWE and LVBM.
Finally, we analyze simulations of LSWE and the LVBM of periodic waves with
a vertical wall at its end. In all cases we compare simulations in the restricted
domain z € [B, L] using the effective boundary condition with simulations in the
entire domain x € [xs, L]. For the time integration, we use the fourth order ode45
solver in MATLAB. Double resolution simulations have been used throughout to
double-check our simulations. We also implemented the second-order modified
midpoint rule to independently check the time integration. The modified mid-
point integrator allowed us to efficiently store the history integrals in the EBC-
formulation, while using a fixed time step that was an integer of the relevant
travel time, see Section [2.3.1] Matlab’s ode45 solver was, however, more efficient.
Since this ode45 solver uses its own time step, we employ linear interpolation to
get the correct incoming or reflected signal at the desired, fixed time step.

2.5.1 Flat Bottom Situation

A straightforward one-dimensional example is given by waves over a flat bottom,
with depth hg, which are reflected at © = xs. The initial "N—wave” profile taken
is

n(z,0) = Af(z)/S with f(z) = % exp(—(z — z9)?/wy?) and S = max( f(z))
(2.49)
and the initial velocity potential is zero. We take A = 1m, the position of the
wave profile g = 0.6km, width wy = 40m, and constant depth hg = 10m. We
consider a full domain with L = 1.2km and a restricted one with B = 0.2km.
Spatial and temporal steps are Az = 0.5m and At = 0.1s, and we simulate till
t = 120s.

In Fig. we compare simulations in the entire domain = € [xg, L] with the
ones using the EBC, for the LSWE. We used a fully reflecting wall at x = x4
and a transparent boundary condition at z = L (using the flat bottom WKBO
technique). The dashed line represents the reflected wave calculated in the whole
domain and the solid one represents the reflected wave using EBC. A good agree-
ment between the two simulations is observed, as expected.
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Figure 2.4: We compare numerical results between a simulation in the whole do-
main (dashed line) and one with the EBC (solid line) for the LSWE with B = 0.2km.
The dashed and solid lines are on top of one another. Wave profiles at times t

0,20,40,...,120s are shown in (a) for both simulations, and in (b) a snapshot is given
at t =120s.
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Figure 2.5: As Fig. 4 for simulations using the LVBM. The deviations are caused by the

approzimation to the dispersive wave propagation in the model area [xs, B] = [0,0.2]km.
Full LVBM: dashed line; LVBM with DWKBO: solid line.
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Figure 2.6: Comparison of the calculated signal at x = B between LSWE (dotted-dashed
line) and LVBM (solid line).
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Figure 2.7: Comparison of calculated signals at x = x5 between LSWE-WKBO (dotted-
dashed line) and LVBM-DWKBO (solid line), together with measured signal at x = x4
in full domain simulation with LSWE (dotted line — coinciding with the dotted-dashed
line) and LVBM (dashed line) for flat bottom situation.

Next, we compare simulation results using the LVBM in a domain with a
flat bottom. In Fig. we show reflected waves for simulations in the entire
domain and ones with the EBC in part of the domain. Again we have a hard-
wall boundary condition at x = x5 and a transparent one at x = L (using the
DWKBO technique, the flat bottom WKBO extension to the LVBM). An extension
of the domain for x > L was made to avoid unnecessary reflection from the left
transparent boundary. The dashed line represents the reflected wave calculated
in the whole domain, and the solid line represents the reflection wave using the
EBC. At t = 80s, when the reflected wave enters the simulation area again, we
can see that the first peak wave travels with the same speed in both simulations,
while the rest have some differences in speed and amplitude. This is expected
since we use a partially non-dispersive analytical model in the model area. A
plot of the scaled spectrum of the initial condition was already shown in Fig.
The simulation using the EBC gives a faster and higher wave since the reflection
model only uses the phase speed of the most dominant wave in the spectrum,
while the shorter waves actually should have travelled with a slower speed. The
deviations decrease when the length of the model area is smaller.

In Fig. the measured wave elevations at * = B for LSWE and LVBM
simulations in the whole domain are shown. In the LSWE simulation, the wave
profile will remain the same as its initial form, while in LVBM the wave has
been dispersed. The higher wave amplitude and successive waves in the LVBM
simulation show the importance of using a dispersive model for tsunami simula-
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Figure 2.8: (a) A plot of the travel time from B = 10km and (b) the transfer function
B against (t —to) = 20 for w = 1.25km (slope 1:50). We chose to = 0.

tion especially in the shallower coastal waters over the continental shelf. We also
show wave elevations at x = x5 in Fig. These signals are higher due to the
hard-wall reflection.

2.5.2 Slowly Varying Topography

We consider three cases with an increasingly realistic varying bottom profile.
Instead of dealing with the full run-up and run-down phenomena, we consider
simpler cases of a slowly varying bathymetry between two constant depths and an
open boundary on the left of x = x5. The first two cases deal with a long tsunami-
type of wave approaching the coast: one with synthetic bathymetry and one with
a bathymetry akin to the one near Aceh, Sumatra, Indonesia. The third case
deals with periodic waves and the coastline is replaced by a reflecting hard wall
at a certain shallow depth. For this case, we use a bathymetry that resembles the
one near Cilacap harbor, Java, Indonesia. Bathymetry data of Aceh are obtained
from the General Bathymetric Chart of the Oceans (GEBCO) with one minute
accuracy (approximately 1830m). While bathymetry of Cilacap is obtained from
a combination of GEBCO’s data and a digitized map of local bathymetry from
the Hydro-Oceanographic Office (www.dishidros.go.id) with 100m accuracy. In
all cases, we will present the results of simulations using LSWE in the simulation
area —with WKB1 in the model area, and using the LVBM in the simulation
area —with DWKBI1 in the model area. We use an irregular grid according to
the depth with ratio y/h1/hg, as the decrease of the wavelength when traveling
from a deep region with depth hg and a shallower region with depth h; in linear
wave theory.
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Figure 2.9: A zoom-in of a simulation in the whole domain for a steep slope (here
w = 0.625km) with the LSWE. The scaled bathymetry profile is plotted with the dashed
line.

Simulation using synthetic bathymetry with transparent coastline

The idealized bathymetry considered in the next example is defined by

(2.50)

_h _
h(x):iho 5 L cos <7r$ ;n+w> +h0—;hl,
w

for = [m — w,m + w]. Parameter values used are m = 2.5km as the middle of
the slope and the half width of the slope w is varied, hg = 60m is the depth in
deep water, before the slow transition to a depth A; = 10m in shallower water.
The domain is [0, 25]km and we simulate till ¢ = 1050s. We used Az = 12.5m at
the shallowest area and At = 1.25s. Transparent boundary conditions have been
used at both boundaries x = z¢, L. An extension of the domain is made for > L
to avoid the reflection from the backward traveling signal at the left transparent
boundary. The initial wave profile is given by the same function , with
initial amplitude 4m and x¢y = 13km. The width parameter of this wave profile
is wg = 0.4km. The initial velocity is zero everywhere.

For a bathymetric profile with w = 1.25km, a plot of the travel time for the
LSWE case from x = B = 10km till 3 = Okm is given in the left panel of Fig.
The right panel in Fig. depicts the transfer function B(o) = fOJ b(eC)d¢ used
in as function of the travel time ¢ = 20. Hence, o serves as a scaled and
shifted travel time. We notice that until z = 3.75km the travel time increases
linearly, whereafter the wave travels more slowly until z = 1.25km as the depth
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Figure 2.10: Comparison of the reflected wave between the simulation in the whole
domain (dashed line) and one using the EBC (solid line) for a steep slope (w = 0.625km),
and snapshots at t = 1050s. The LSWE with WKBI results are displayed in (a), (c)
and the LVBM with DWKBI results in (b), (d).

becomes shallower. Subsequently, travel time increases linearly again since the
wave continues over flat bathymetry. We therefore see that the signal arrives the
escarpment at ¢ = 515.2s, since we used ty = 0, and that the wave-topography
interaction lasts till ¢ = 822.4s.

A simulation in the whole domain with the LSWE is shown in Fig. [2.9]together
with the scaled bathymetry (dashed line). A small reflection from the bathymetry
can be seen at later times after the wave enters the shallows. A comparison of
reflected waves between simulations in the whole domain and ones with the EBC
in part of the domain is displayed in Figs. for w = 0.625km (slope 1:25),
w = 1.25km (slope 1:50), and w = 2.5km (slope 1:100), respectively. The dashed
line represents the reflected wave calculated in the whole domain [0, 25]km, and
the solid one represents the reflected wave using the EBC at x = 10km. LSWE-
WXKBI results are shown in a,c), while LVBM-DWKBI results are shown in b,d).
We clearly see, for both models, that there are some errors between the numerical
solution in the whole domain and the one using the EBC. These errors are likely
asymptotic, caused by the fact that the bathymetry does not vary slowly enough,
as the analytical solution is only valid for a slowly varying bathymetry. It can be
seen that when the slope is steeper, the error is larger, as expected. Both results
also show that simulations with the EBC yield slightly higher wave amplitude
than simulations in the whole domain.

When the LVBM with the DWKB1 EBC is used, we can also see that the
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Figure 2.11: Comparison of the reflected wave between the simulation in the whole
domain (dashed line) and using the EBC (solid line) for a mild slope (w = 1.25km) and
snapshots at t = 1050s. The LSWE with WKB1 results are displayed in (a), (¢) and
the LVBM with DWKBI1 in (b), (d).
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Figure 2.12: Comparison of the reflected wave between the simulation in the whole
domain (dashed line) and using EBC (solid line) for very mild slope (w = 2.5km) and
the snapshots at t = 1050s. The LSWE with WKB1 results are displayed in (a), (c) and
the LVBM with DWKBI1 results in (b), (d).
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Figure 2.13: Comparison of calculated signals at x = x5 between LSWE-WKB1 (dotted-
dashed line) and LVBM-DWKBI1 (solid line), together with measured signals at T = x4
in a full domain simulation with LSWE (dotted line) and LVBM (dashed line) for a steep
slope.
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Figure 2.14: Comparison of calculated signals at x = x5 between LSWE-WKBI (dotted-
dashed line) and LVBM-DWKBI1 (solid line), together with measured signals at © = x4

in a full domain simulation with LSWE (dotted line) and LVBM (dashed line) for a mild
slope.
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Figure 2.15: Comparison of calculated signals at x = x5 between LSWE-WKBI (dotted-
dashed line) and LVBM-DWKB1 (solid line), together with measured signals at x = x4
in a full domain simulation with LSWE (dotted line) and LVBM (dashed line) for a very
mald slope.

waves with EBC (solid line) are slightly faster than waves for simulations in the
whole domain. That is the reflected wave has travelled a bit further towards
the right. This is in agreement with the result from the previous section, since
the reflection DWKB1 model only uses the phase speed of the peak wave. The
L?—errors between the numerical solutions in the whole domain and ones using
the EBC are found in Table for WKB1 and DWKBI1. This error is defined

as
L
/ (Thwhole — MEBC)*d (2.51)
B

with nwhole the finite element solution in the whole domain, and nggc the one in
the simulation area only.

slope | WKB1 L%-error [m?] | DWKB1 L?-error [m?]
1:25 4.61 x 107! 4.54 x 1071
1:50 6.15 x 1072 5.68 x 1072
1:100 7.12 x 1073 5.91 x 1073

Table 2.1: The L?—error between numerical solutions in the whole domain and ones
using the EBC for the LSWE-WKBI1 model (second column) and LVBM-DWKBI1 model
(third column).

The results using DWKB1 show that there are some reflections from the
transparent boundary condition at z = B used in the LVBM, reflections that
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Figure 2.16: (a) Bathymetry near Aceh and (b) the cross section at (95.0278°FE,
3.2335°N)-(96.6583° E, 3.6959°N). The solid line concerns the bathymetry data and the
dashed line concerns the approrimation.

have travelled back to x = L at ¢t &~ 900s. We notice these small rightward
travelling waves in the simulations using the EBC (solid line) in Figs.
2.12b), besides the larger reflection from the slowly varying bathymetry (see the
very mild slope case, when the reflection from the bathymetry is smallest). This
reflection arising from the transparent boundary condition appears because our
transparent boundary condition for the LVBM is only an approximation,
which is optimal for long waves.

Finally, a comparison between the simulations using the EBC for both the
LSWE and the LVBM in Figs. shows that the WKB approximation
is very good for the LSWE and less good for the LVBM. However, the peak
amplitude is well approximated, but there is a phase shift and the EBC results
show milder oscillations. The reason is that we measure in deeper water at
x = B and subsequently use a WKB-approach based on non-dispersive shallow
water modelling, while in the full simulation dispersion becomes important in the
shoaling waters.

Simulation using simplified Aceh bathymetry with transparent coast-
line

Bathymetry near Aceh, Indonesia, is displayed in Fig. [2.16] The left figure
concerns bathymetry data from GEBCO, with zero value for the land. The right
figure concerns the cross section at (95.0278°E, 3.2335°N)-(96.6583°E, 3.6959°N)
shown by the solid line. The 2004 Indian Ocean tsunami was occurred with a
magnitude of Mw 9.1 at the epicenter point 95.854° E, 3.316° N, that is shown by
the symbol. In the simulation area = € [40,200]km, we follow the real bathymetry
of Aceh. In the model area x € [0,40]km, we use a simplified bathymetry that
is shown by the dashed line, and defined by the function with parameter
values hg = 20m, hy = 10m, m = 35km, w = bkm, continued with a constant
depth of 10m. We will show simulations for the LSWE with WKB1 and the
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Figure 2.17: Simulation results for the Aceh case in the entire domain for the LVBM
model.
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Figure 2.18: Comparison between simulation in the whole domain (dashed line) and
using the EBC (solid line), and snapshots at t = 120min. The LSWE with WKBI results
are displayed in (a), (¢) and LVBM with DWKBI in (b), (d).
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Figure 2.19: Comparison of calculated signals at x = B between LSWE-WKBI1 (dotted-
dashed line) and LVBM-DWKBI (solid line) for the Aceh case.

M [m]

o 165 11 0

115
t [min]

Figure 2.20: Comparison of calculated signals at x = x5 between LSWE-WKBI (dotted-
dashed line) and LVBM-DWKB1 (solid line), together with measured signals at x = x4

in full domain simulation with LSWE (dotted line) and LVBM (dashed line) for the Aceh
case.
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LVBM with DWKBI1. The boundary at x = L is transparent. The grid size used
in the simulation area is Az = 35bm at the shallowest part near x = B. It is
reasonable for a tsunami simulation as Horillo et al. (2006) use Az = 10m in
the onshore area for one dimensional simulations. The time step is At = 5s until
t = 120min.

The initial wave profile is again given by the profile in (2.49) with zero initial
velocity. The initial amplitude is A = 4m, g = 140km is the position of the
initial wave profile, and wy = 5km is its 'width’. The simulation results in the
whole domain for LVBM are displayed in Fig. in which we clearly see the
break up of the initial wave profile in multiple waves tailgating the main wave
in the shallow waters at = € [0,40]km. The comparison between the numerical
solution in the whole domain (dashed line) and the simulation using the EBC
within the domain (solid line) is shown in Fig. at 120min. The results of
the LSWE with WKBI are shown in a,c) and the ones of LVBM with DWKB1
in b,d). We can see that dispersion causes negligible differences in the reflected
waves.

In Fig. the comparisons of wave elevation measured at B = 40km for
LSWE with WKB1, LVBM with DWKBI1, and the full simulation are shown. As
in the flat bottom case, here we can see that the LVBM model gives a higher
amplitude (about 1m height) and a wave tail. Later, these waves will amplify as
the depth gets shallower and also will disperse more as shown in Fig. 2.17 The
difference clearly indicates that dispersion effects should be taken into acount in
tsunami propagation. The signals arriving at x = x4 are displayed in Fig. [2.20]
for LSWE with WKB1, LVBM with DWKBI1, and the full simulations. It shows
that the simulations with the EBC are very good, also in comparison with the
previous case, presumably because we have started the model zone at x = B
where the water depth is shallow.

2.5.3 Periodic waves and wall reflections

The third case concerns periodic waves entering a harbor, where dispersion can
also be important when the depth becomes more shallow. When the coastline in
the harbor is modeled by a hard wall, further reflections arise. We use bathymet-
ric data nearby Cilacap harbor, Java, Indonesia, displayed in Fig. The left
figure concerns bathymetry data from the GEBCO and the Hydro-Oceanographic
Office, with zero value for the land. The right figure concerns the cross section
at (106.895°E, —6.042°N)-(106.9533°E, —6.0682°N) shown by the solid line. The
simulation in the entire domain simulation concerns a domain z € [0, 7]km in
which the real bathymetry is used in the simulation area for z € [1,7]. The
simplified bathymetry used in the model area is shown by the dashed line, and
defined by a function with hg = 6m, hqy = 1m, m = 0.5km, w = 0.5km, for



40 EBC for Dispersive Tsunami Propagation

@
<3
=
k=)

2

S
3

-6‘1210686 106.88 1069 106.92 106.94 106.96 106.98 0 1 2
(a) Latitude (b)

3 1
x [km]

Figure 2.21: (a) Bathymetry near Cilacap and (b) the cross section at (106.895°F,
—6.042°N)-(106.9533°F, —6.0682°N). The solid line concerns the bathymetry data and
dashed line concerns the approrimation.

x € [0,1]. We influx a periodic wave with amplitude 0.4m and wave period 25s.
The smallest grid size in the simulation area near z = B is Az = 2.5m, and the
time step is At = 1s till ¢ = 20min.

In Fig. the comparison between the numerical solution in the whole
domain (dashed line) and the one using the EBC (solid line) is shown. The
results with the LSWE and WKB2 are shown in a,c) and the ones with the
LVBM and DWKB2 are shown in b,d). We can see that at later times there are
differences between the numerical solution in the whole domain and the one using
EBC due to the asymptotic nature of the WKB approximation. In contrast with
previous cases, where the reflections arise only for one N—wave, this case shows
the capability of our EBC to continuously measure the incoming wave and influx
the reflection during their interactions. The signals at the end of the harbor
at @ = xs are shown in Fig. and for various simulations. It shows
the strength of our approach using the EBC. In LVBM simulations, the wave
arrives later at x = x4 since its wave speed is smaller than in LSWE. Finally,
wave dispersion is important and the LVBM with and without EBC yields better
predictions than LSWE.

2.6 Conclusions

We have formulated an effective boundary condition (EBC) for the nondispersive,
linear, shallow water equations (LSWE) and the dispersive, linear, variational
Boussinesq model (LVBM). The EBC is used as boundary condition in a domain
divided into a simulation area and a model area. As the names indicate, the
numerical model with the EBC is shorter and the wave reflection in the model
area is (approximately) modeled analytically. The model area typically concerns
the shallow bathymetry near the coast, which tends to be computationally costly
in a numerical model for the entire domain. For that reason, the shallow coastal
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Figure 2.22: Comparison between the simulation in the whole domain (dashed line)
and one using the EBC (solid line) for periodic waves with wall reflections. Snapshots

at t = 20min. The LSWE with WKB2 results are displayed in (a), (¢) and LVBM with
DWKB2 in (b), (d).



42 EBC for Dispersive Tsunami Propagation

n [m]
2

_%2 1‘3 1‘4 1‘5 1‘6_ 1‘7 1é 15 20
t [min]
Figure 2.23: Comparison of calculated signals at x = x5 between LSWE-WKB2 (dotted-

dashed line) and measured signals at © = x5 for a simulation in the full domain with
LSWE (dotted line) for periodic waves case.
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Figure 2.24: Comparison of calculated signals at x = x5 between LVBM-DWKB2 (solid

line) and measured signals at x = x4 for a simulation in the full domain with LVBM
(dashed line) for periodic waves case.
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zone is sometimes even ignored in numerical models for tsunami prediction and
a fully reflective hard-wall boundary condition is used at some shallow depth. In
contrast, our EBC is a (partially) reflective, history-dependent boundary condi-
tion for an internal boundary. In one dimension normal to the coast line, this
internal boundary lies at * = B and the coastline at x = x5. We have defined
an observation and influx operators for both models at this internal boundary
at x = B. The reflection in the model area is derived based on the well-known
shallow water theory and the WKB approximation, with extensions to the dis-
persive variational Boussinesq model. We have integrated this EBC with a finite
element treatment in the simulation area and analytical, asymptotic methods in
the model area, and have coupled the dynamics using variational principles.

Several test cases have been considered to verify and validate our approach
by comparing simulations in the whole domain with ones using the EBC in the
smaller simulation domain. These comparisons of LSWE and LVBM show that
dispersion effects play an important role and cannot be neglected in simulations
of tsunami propagation. As can be seen in Fig. for example, the signal
measured in the LVBM simulation yields a higher peak wave elevation of about
1m. In such more dispersive cases, successive wave tails behind the main wave
can cause further disaster.

Comparisons of the numerical performances between simulations in the whole
domain and simulations using EBC show that our EBC results are competitive
in several cases. A comparison of simulation times of all test cases discussed is
shown in Table The ”assembling matrix” times are shorter for all EBC cases,
since we reduce the length of our domain in the EBC models. The ”"ode” times for
the EBC models are always shorter than ones in the LSWE simulations, while for
LVBM the simulations with EBC are faster except for the flat bottom case. The
reason is that in our EBC models, we impose transparent boundary conditions
at x = B instead of the hard-wall boundary conditions (natural boundary condi-
tions) for the full simulation. These transparent boundary conditions are essential
boundary conditions, adding extra terms in the stiffness matrices. Consequently,
the time step used in the ode4b solver to ensure stability is smaller. It increases
the computational time in the first case (where we use hard-wall boundary con-
ditions at the right boundary for the full simulation), while in the second and
third cases we have transparent boundary conditions for both cases and therefore
the EBC models are faster. In the fourth case, we also have hard-wall bound-
ary conditions at the right boundary for the full simulation, but the increase of
computational time due to assembly of the stiffness matrices is compensated by
the domain reduction in EBC implementation. In the first case, we only reduce
a simple flat bottom in the model area, while in the fourth case we reduce the
more complicated nearshore area therefore reducing the simulations time. The
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Case Nx | matrix | ode | trf. | total | ratio

Full Flat LSWE 3000 0.21 24.38 - 24.59 | 0.20
Flat LSWE — WKBO 2600 0.17 21.85 - 22.02 | 0.18
Full Flat LVBM 3000 | 0.63 | 13.95 - 14.58 | 0.12
Flat LVBM — DWKBO 2600 | 0.50 | 17.93 - 18.43 | 0.15

Full Synthetic bath. LSWE 1387 | 0.02 4.76 - 4.78 | 0.005
Synth. bath. LSWE - WKB1 980 0.02 3.97 | 0.55 | 4.54 | 0.004

Full Synthetic bath. LVBM | 1387 | 0.16 | 6.29 | - | 6.45 | 0.006
Synth. bath. LVBM - DWKB1 | 930 | 0.10 | 5.08 | 0.95 | 6.13 | 0.005
Full Aceh’s bath. LSWE 4231 0.09 |24.09] - [24.18]0.003
Aceh’s bath. LSWE - WKB1 | 2697 | 0.04 | 18.01 | 0.91 | 18.96 | 0.003
Full Aceh’s bath. LVBM 4231 | 0.68 |28.89| - |29.57 | 0.004

Aceh’s bath. LVBM - DWKB1 | 2697 | 0.34 | 18.48 | 2.04 | 20.86 | 0.003

Full Periodic waves LSWE 2599 | 0.05 | 27.29 - 27.34 | 0.02
Periodic waves LSWE — WKB2 | 1999 0.03 24.03 | 0.08 | 24.14 | 0.02
Full Periodic waves LVBM 2599 | 0.32 | 21.20 - 21.52 | 0.02
Periodic waves LVBM — DWKB2 | 1999 | 0.21 19.63 | 0.37 | 20.21 | 0.02

Table 2.2: Table of simulation times for all test cases considered. Nz is the number of
elements used (equidistant mesh). Column "matriz” shows the time [s] needed for assem-
bling the mass and stiffness matrices. Column "ode” concerns the time spent [s] in the
time loop, including computing the observation and influx operator in EBC models. Col-
umn “transformation” is the time spent [s] in calculating the coordinate transformation
and transfer function (which depends on bathymetric function) in the WKB1, WKB2,
DWKBI1, and DWKB2 approaches. Column "total” shows the total time [s]. The last
column “time ratio” is the fraction of time spent in Matlab’s ”ode” and the physical time
of simulated cases.

”transformation” column shows the time needed for transformation to the new
coordinate and calculation of the transfer function in WKB1, WKB2, DWKBI,
and DWKB2 approaches, as explained in subsection[2.3.2] The last column ”time
ratio” is the fraction of time spent in Matlab’s ”ode” and the physical time of
simulated cases. This table shows the strength of our EBC model to reduce the
computational time while preserving the accuracy of the results.

The two dimensional extension of the present technique directly follows by
numerically integrating a 2D horizontal linear (dispersive) model in the open sea
towards the EBC line, after which the analytical 1D theory derived in this article
is used for every point on this line. This works provided the waves propagate
approximately normal to the EBC (contour) line due to diffraction to the onshore
direction via Snell’s law. Obviously, the 2D effects in the nearshore area such as
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refraction, focusing, etc. are neglected by applying this approach. |Choi et al.
[2011] applies this technique and shows that it can be used as a rapid method
to predict tsunami run-up heights from 2D numerical simulations. Nevertheless,
in Choi et al. (2011), an impermeable boundary condition is used at a 5 — 10m
depth at the last sea points instead of a transparent boundary as in the EBC
approach. For the future work, we aim to derive the EBC that includes the non-
linear run-up and run-down phenomena on the shore. Note that our variational
methodology directly extends to the 2D horizontal and nonlinear case.
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CHAPTER 3

Effective Coastal Boundary
Conditions for Tsunami Wave
Run-Up over Sloping
Bathymetry

Abstract [

An effective boundary condition (EBC) is introduced as a novel technique for
predicting tsunami wave run-up along the coast, and offshore wave reflections.
Numerical modeling of tsunami propagation in the coastal zone has been a daunt-
ing task, since high accuracy is needed to capture aspects of wave propagation
in the shallower areas. For example, there are complicated interactions between
incoming and reflected waves due to the bathymetry and intrinsically nonlinear
phenomena of wave propagation. If a fixed wall boundary condition is used at
a certain shallow depth contour, the reflection properties can be unrealistic. To

!Previous version of this chapter has been published as:
Kristina, W., Bokhove, O., and van Groesen, E.: Effective coastal boundary conditions for
tsunami wave run-up over sloping bathymetry, Nonlin. Processes Geophys. Discuss., 1, 317-
369, do0i:10.5194 /npgd-1-317-2014, 2014.

2In press:
Kristina, W., Bokhove, O., and van Groesen, E.: Effective coastal boundary conditions for
tsunami wave run-up over sloping bathymetry, Nonlin. Processes Geophys., 2014.
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alleviate this, we explore a so-called effective boundary condition, developed here
in one spatial dimension. From the deep ocean to a seaward boundary, i.e., in the
simulation area, we model wave propagation numerically over real bathymetry
using either the linear dispersive variational Boussinesq or the shallow water
equations. We measure the incoming wave at this seaward boundary, and model
the wave dynamics towards the shoreline analytically, based on nonlinear shallow
water theory over bathymetry with a constant slope. We calculate the run-up
heights at the shore and the reflection caused by the slope. The reflected wave
is then influxed back into the simulation area using the EBC. The coupling be-
tween the numerical and analytic dynamics in the two areas is handled using
variational principles, which leads to (approximate) conservation of the overall
energy in both areas. We verify our approach in a series of numerical test cases
of increasing complexity, including a case akin to tsunami propagation to the
coastline at Aceh, Sumatra, Indonesia.

3.1 Introduction

Shallow water equations are widely used in the modeling of tsunamis, since their
wavelengths (typically 200km) are far greater than the depth of the ocean (typ-
ically 2 to 3km). Tsunamis also tend to have a small amplitude offshore, which
is why they generally are less noticeable at sea. Linear shallow water equations
(LSWE) therefore often suffice as a simple model of tsunami propagation |Choi
et al., 2011} Liu et al. 2009]. On the contrary, it turns out that the lack of dis-
persion is a shortcoming of shallow water modeling when the tsunami reaches the
shallower coastal waters on the continental shelf, and thus dispersive models are
often required [Madsen et al., (1991, Horrillo et al., 2006]. Numerical simulations
based on these linear models are desirable because they involve a small amount
of computation. However, as the tsunami approaches the shore, shoaling effects
cause a decrease in the wavelength and an increase in the amplitude. Here, the
nonlinearity starts to play a more important role, and thus the nonlinear terms
must be included in the model. To capture these shoaling effects in more detail,
a smaller grid size will be needed. Consequently, longer computational times are
required.

Some numerical models of tsunamis use nested methods with different mesh
resolutions to preserve the accuracy of the solution near the coastal area |Titov
et al., 2011} Wei et al., 2008, [Kanoglu and Synolakis| [1998], while other models
employ an impenetrable vertical wall at a certain depth contour as the boundary
condition. Obviously, the reflection properties of such a boundary condition can
be unrealistic. We therefore wish to alleviate this shortcoming by an investi-
gation of a so-called effective boundary condition (EBC) |Kristina et al., |2012],
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x=B x=1L

Figure 3.1: At the seaward boundary x = B, we assign (n, u)—data, and we want to find
a solution of the NSWE on the sloping region near the shoreline.

including run-up. In one horizontal spatial dimension, an outline of the desired
mathematical modeling is sketched in Fig. In the deep ocean for x € [B, L]
with horizontal coordinate x and seaward boundary point x = B, denoted as the
simulation area, we model the wave propagation numerically using a linear model.
In the coastal zone for = € [x4(t), B] with shoreline position z4(t) < B, denoted
as the model area, we model the wave propagation analytically using a nonlinear
model by approximating the bathymetry as a planar beach. We calculate the
run-up heights at the shore and the reflection caused by the slope. The reflected
wave is then influxed back into the simulation area using the EBC. The coupling
between the numerical and analytic dynamics in the two areas is handled using
variational principles, which leads to (approximate) conservation of the overall
energy in both areas. Following Kristina et al. [2012], an observation and influx
operator are defined at x = B to measure the incoming wave signal and to influx
the reflected wave, respectively.

The shoreline position and wave reflection in the model area (sloping region)
are determined using an analytical solution of the nonlinear shallow water equa-
tions (NSWE) following the approach of [Antuono and Brocchini| [2010] for un-
broken waves. The decomposition of the incoming wave signal and the reflected
one is also described in |Antuono and Brocchini| (2007, |2010) for the calculation
of the shoreline and the wave reflection. Nevertheless, the method in their pa-
per is applied by determining the incoming wave signal with the solution of the
Korteweg-de Vries (KdV) equation. The novelty of our approach is the utilization
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of an observation operator at the boundary x = B to calculate the incoming wave
elevation towards the shore from the numerical solution of the LSWE in the sim-
ulation area. For any given wave profile and bathymetry in the simulation area,
the numerical solution can be calculated, and the signal arriving at * = B can
be observed. Afterwards, the data are used to calculate the analytical solution
of the NSWE in the onshore region and the reflected waves.

A rapid method for estimating tsunami run-up heights is also suggested by
Choi et al. [2011} 2012] by imposing a hard-wall boundary condition at = = B.
Giving the water wave oscillations at this hard wall at x = B, the maximum run-
up height of tsunami waves at the coast is subsequently calculated separately by
employing a linear approach. It is claimed that the linear and nonlinear theories
predict the same maximal values for the run-up height if the incident wave is
determined far from the shore [Synolakis, |1987]. In contrast, |Li and Raichlen
[2001] show that there is a difference in the maximum run-up prediction between
linear and nonlinear theory. In addition to calculating only the maximum run-up
height as in Choi’s method, our EBC also includes the calculation of reflected
waves. The point-wise wave height in the whole domain (offshore and onshore
area) is thus predicted accurately. For the inundation prediction, we have verified
that the method introduced by Choi et al. (2011}, [2012) performs as well as our
EBC method, while reflection wave comparisons show larger discrepancies due to
the usage of a hard-wall boundary condition. The interaction between incoming
and reflected waves needs to be predicted accurately, since subsequent waves
may cause danger at later times. |Stefanakis et al| [2011] investigate the fact
that resonant phenomena between the incident wavelength and the beach slope
are found to occur. The resonance happens due to incoming and reflected wave
interactions, and the actual amplification ratio depends on the beach slope. It
explains why in some cases it is not the first wave that results in the highest
run-up.

Determination of the location of the seaward boundary point x = B is another
issue that must be addressed. [Choi et al. [2011] put the impermeable boundary
conditions at a 5-10m depth contour. In comparison, Didenkulova and Peli-
novsky| [2008] show that their run-up formula for symmetric waves gives optimal
results when the incoming wave signal is measured at a depth that is two-thirds
of the maximum wave height. We determine the location of this seaward bound-
ary as the point before the nonlinearity effect arises, and examine the dispersion
effect at that point as well. Considering the simple KdV equation |[Mei, 1989,
the measures of nonlinearity and dispersion are given by the ratios ¢ = A/h
and p? = (kh)? for the wave amplitude A, water depth h , and wavenumber k.
Provided with the information of the initial wave profile, we can calculate the
amplification of the amplitude and the decrease in the wavelength in a linear
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approach, and thereafter estimate the location of the EBC point.

The EBC in this article will be derived in one spatial dimension for reasons
of simplicity and clarity of exposure. The numerical solution in the simulation
area is based on a variational finite element method (FEM). In order to verify the
EBC implementation that employs this asymptotic closed-form solution, we also
numerically simulate the NSWE in the model area using a finite volume method
(FVM). Both cases are coupled to the simulation area to compare the results. We
also validate our approach against the laboratory experiment of |Synolakis [1987].
In Sect. we introduce the linear variational Boussinesq model (LVBM) and
shallow water equations (SWE), both linear and nonlinear, from their variational
principles. The coupling conditions required at the seaward boundary point are
also derived here. The solution of the NSWE using a method of characteristics
is shown in Sect. which includes the solution of the shoreline position. In
Sect. the effective boundary condition is derived. It pinpoints the newly
derived coupling conditions between the finite element simulation area and the
model area. Numerical validation and verification are shown in Sect. and we
conclude in Sect. [3.61

3.2 Water wave models

Our primary goal is to model the water wave motion to the shore analytically,
instead of resolving the motion in these shallow regions numerically. We therefore
introduce an artificial open boundary at some depth, and wish to determine an
effective boundary condition at this internal boundary. Consider motion in a
vertical plane normal to the shore, with an offshore coordinate x. The artificial
boundary is then placed at x = B, while the real (time-dependent) boundary lies
at © = x4(t) with z4(¢f) < B. For example, at rest, land starts at z = 0, where
the total water depth h(0,t) is zero. This water line is time dependent, as the
wave can move up and down the beach.

We will restrict our attention to the dynamics in a vertical plane with horizon-
tal and vertical coordinates x and z, respectively. Nonlinear potential flow water
waves are succinctly described by the variational principles as follows [Luke, |1967,
Zakharov, 1968, Miles, 1977]:

T
0:5/ Lo, ®,n,xs) dt
0

B T rL 1 ) ) n 1 ,
_5/0 /xs <¢6tn—29 ((h+b) —b )—/_hb §\V<I)| dz> dadt (3.1)

with velocity potential ® = ®(z,z,t) and surface potential ¢(z,t) = ®(x,z =
n,t), where n = h — hy, is the wave elevation and h = h(x,t) the total water
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depth above the bathymetry b = —hy(x), with hp(x) the rest depth. Time runs
from t € [0,T]; partial derivatives are denoted by 0, et cetera, the gradient in
the vertical plane by V = (9, 9,)T, and the acceleration of gravity by g.

The approximation for the velocity potential ® in Eq. can be of various
kinds, but all are based on the idea of restricting the class of wave motions to
a class that contains the wave motions one is interested in |[van Groesen) [2000,
Cotter and Bokhove, [2010, |Gagarina et al., 2013]. Following Klopman et al.
[2010], we approximate the velocity potential as follows

O(x,2,t) = ¢(x,t) + F(2)(x,t) (3.2)

for a function F' = F(z). Its suitability is determined by insisting that F'(n) =
0, such that ¢ is the potential at the location z = n of the free surface and
satisfies the slip flow condition at the bottom boundary z + hp(z) = 0. The
latter kinematic condition yields 0,® 4+ 0, P09, hy, = 0 at z = —hp(x). For a slowly
varying bottom topography, this condition is approximated by

(0:9),_ o) = F' (—h) = 0. (3.3)

Substitution of Eq. (3.2)) into Eq. (3.1) yields the variational principle for
Boussinesq equations, as follows [Klopman et al., [2010]

T
0= [ £fovnnat
0
ot 1 2 g2y 1 2
=0 [ [ (00m = 50 (02 1) = § (04 ) 0
- 00,0~ palo vl - 3R ) dadt, (34
where functions 3(z), &(z), and ¥(z) are given by

n n n
B(x) = / Fdz, (z) = / F2dz, A(z) = / (F')2dz.  (3.5)
—hy —hy —hy,
The shallow water equations (SWE) are derived with the assumption that the
wavelengths of the waves are much larger than the depth of the fluid layer, so
that the vertical variations are small and will be ignored. In this case, there is no
dispersive effect. The velocity potential is approximated over depth by its value
at the surface, such that F'(z) = 0. Hence, when B=d= ¥ =0 in Eq. , the
nonlinear shallow water equations are obtained as a limiting system.

We a priori divide the domain into two intervals: x € [B, L], where we model
the wave propagation linearly, and x € [zs(t), B], where we keep the nonlinearity.
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To be precise, in the simulation area x € [B, L], we linearize the equations, and
thus the wave propagation in this domain is modeled by the linear shallow water
shallow water equations or the linear yet dispersive Boussinesq model. In the
model area x € [z4(t), B], we only consider depth-averaged shallow water flow.
The non-dispersive and nonlinear shallow water equations are thus used to model
the wave propagation in this region. Hereafter, we write g[; and 7 for the linear
variables and also the definitions of 3, & and ¥ simplify accordingly. Consequently,
by applying the corresponding approximations to variational principle , the
(approximated) variational principle becomes

7'(2} 777¢; 77ny1| dt (36&)

|
N | =
<

o 1 . 1,
7 5 hul0udl? — 000 — 5ol — Lo )dx

B
+ /m <<Z>8m - 19 ((h+b)* —b*) — % (n+ hy) ’a$¢2> (3.6b)

We choose a parabolic profile function F(z;hy,) = 2z/hy, + 22/h2, in which
the x dependence is considered to be parametric when total water depth h is
sufficiently slowly varying. The coefficients in (3.5 simplify to their linearized
counterparts in the simulation area where the linear Boussinesq equations hold
(while these coefficients disappear in the model area where the nonlinear depth-
averaged shallow water equations hold)
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The variations in Eqgs. (3.6) yield

1 (T
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where we used the endpoint conditions én(0) = én(7') = 0, and no-normal
through-flow conditions at x = L and h (xs(t),t) = 0. Since the variations are
arbitrary, the linear equations emerging from Eq. (3.8b) for x € [B, L] are as
follows:

0 + gij =0, (3.9a)
01} + O (h,020) + 0x(BOp0) = 0 (3.9b)
02(6021)) + 02(B020) — 30 = 0 (3.9¢)

and for x € [z4(t), B], we get the nonlinear equations of motion

1
O + gn + §a§¢ =0, (3.10a)
O+ 0z (n + hy,) 0z0) = 0. (3.10b)

The last two terms in Eq. (3.8b|) are the boundary terms at = z5. They can be
rewritten as follows:

T T
e G 00 et at= [ (<00 ree) -0t ) an|
0 0 T=x4

dt
(3.11)

since the total depth is h(xg,t) = n(zs,t) + hy(zs) = 0 at the shoreline boundary.
We therefore have the relation 0 = §h (xg,t) = Sh+0,hdzs = dn+0; (n + hy) dxs.
Substituting Eq. (3.10bf) into (3.11)), the boundary condition at the shoreline is

dxg
X = L0 at x = xz4(t); (3.12)

i.e., the velocity of the shoreline equals the horizontal velocity of the fluid particle.
The underlined terms in Eq. (3.8b|) apply at the seaward point, where we want
to derive the coupling of effective boundary conditions. To derive the condition
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for the linear model, the goal is to write these terms using the variations 5@7) and
d1p. Because the depth-averaged shallow water equations are considered, we have

1

o(x,t) = B(x,t) = e D, (3.13)

where the last equality arises from approximation ({3.2)) for the velocity potential.
The variation of d¢ thus becomes

6 =3¢ + hﬁb&;. (3.14)

Substituting this into Eq. (3.8b)), we get the coupling condition at = B for the
linear model as follows:

hu0u® + BOx1) = hdyh (3.15a)

B

60+ $0r6 = 3 hideo (3.15b)

To derive the condition for the nonlinear shallow water model, we use the approx-
imation for the velocity potentlal again. S1nce F(z =n) = 0 at the surface,
we have ¢ = ¢ and thus ¢ = 5q§ Frorn Eq. , the coupling condition for a
nonlinear model is given by

hdpd = hiOup + B . (3.16)

Note that the coupling conditions f are used to transfer the infor-
mation between the two domains. Coupling condition gives the information
of qz and v in the simulation area, provided the inforrnation of ¢ from the model
area is given. Meanwhile, coupling condition gives the information of ¢ in
the model area, provided the information of d) and ¢ from the simulation area is
given.

3.3 Nonlinear Shallow Water Equations

3.3.1 Characteristic form

We will start with the NSWE in the shore region. Using n = —hy, +h and velocity

u = 0,¢, we may rewrite Eq. (3.10|) as follows (starred variables are used here
for later convenience):

Ope ™ + Opx (W*u*) =0 (3.17a)

Op ™ + w O™ = —g*Opr (—hy, + h”). (3.17b)



56 EBC for Tsunami Wave Run-Up over Sloping Bathymetry

The dimensionless form of Eq. (3.17)) for a still water depth hf = y*2* (where
v* =tan 6 is the beach slope) is obtained by using the scaling factors [Brocchini
and Peregrine, 1996]

h=—u=—,2z=—,t=—, (3.18)

in which hg is the still water depth at the seaward boundary, and ug, lg, and g
are defined below as

_ hoy

g*hol 7 [gho
s L0 — *7t0_7

g v v\ g*

, (3.19)

ug =

where ¢ = 1 and v = 1 are dimensionless gravity acceleration and beach slope,
respectively. The NSWE in dimensionless form are then given by

Oth + 0y (hu) =0 (3.20a)
Ou + udzu = gy — gozh. (3.20b)

The asymptotic solution of this system of equations for wave propagation
over sloping bathymetry has been given for several initial-value problems using a
hodograph transformation [Carrier and Greenspan) (1958, Synolakis| (1987, |Peli-
novsky and Mazova 1992, |Carrier et al., 2003, [Kanoglul 2004], and also for the
boundary-value problem |Antuono and Brocchini, 2007, [Li and Raichlen) [2001,
Madsen and Schéffer, 2010] that will used in this article. Since the system is
hyperbolic, it has the following characteristic forms:

do dx
A R T 21
g 0 on G U ¢ (3.21a)
ds dz
= = = 21
gr 0 on 3 -ute (3.21b)
in which ¢ = +/gh,
a=2c—u+gyt, and [ =2c+u— gyt (3.22)

Variables « and  are the so-called Riemann invariants, since they do not change
their value along the characteristic curves in Eq. (3.21)). Assuming the flow to
be subcritical (that is, |u| < ¢), the first characteristic curves with u — ¢ < 0 are
called “incoming”, since they propagate signals towards the shore. The second
ones with u + ¢ > 0 are called “outgoing”, since they move towards the deeper
waters (carrying information on the wave reflection over the sloping region).
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3.3.2 A trivial solution of the characteristic curve

In the trivial case of no motion (u = n = 0), as well as in the dynamic case
presented later, we focus on the incoming characteristic curve. In the rest case,
it is given by

dx
T —/97z. (3.23)

For x # 0, substituting y = ,/g7yx results in the general solution for variable y as
follows:

1
Y= —ig’yt—i—Cg, (3.24)

with a constant C5. When the curve intersects x = B at time 7, with hg the
depth at « = B, such that hg = vB and y(B) = \/g7B = cp, the particular
solution is given by

_ 2c0—gy(t—T)
y = 5 -

In the case of no motion, the boundary data o = (1) and 8 = [o(7) are as
follows:

(3.25)

ag = 2¢o + g, Bo = 2¢o — gT. (3.26)

Transforming back to the x variable, while using these expressions, we get the
incoming characteristic curve
972w — (t = 7))?

1 2
— — (gyt— — 2
T 497(97 o) 1 (3.27)

with w = ¢o/(g7y). Along this characteristic curve, the Riemann invariant is
constant.

Figure shows the characteristic curves of the dimensionless NSWE over
sloping bathymetry b(x) = —z for z € [0,1], and LSWE over flat bathymetry
ho =1, B =1 for z € [1,2]. As in our previous paper [Kristina et al., 2012], the
characteristic curves of the LSWE are given by dx/dt = +¢y. The “incoming”
and “outgoing” characteristic curves are shown by the solid and dashed lines,
respectively.

For each characteristic curve , the location of the shoreline can be deter-
mined by looking for the 7 = 74 for which the characteristic reaches the shoreline
position, here z = 0, at time ¢. It is given by the condition

ox

9= 0 sothat 75 =1 —2w. (3.28)
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Figure 3.2: Plot of the characteristic curves in the case of no motion (n =u =0) for
the dimensionless NSWE over sloping bathymetry b(x) = —x for x € [0,1] and LSWE
over flat bathymetry hg = 1,B = 1 for x € [1,2]. The “incoming” and “outgoing”
characteristic curves are shown by solid and dashed lines, respectively. The shoreline
x =0 can be seen as the envelopes of the characteristic curves themselves.

As displayed in Fig. the incoming characteristic curves that reach the shore-
line at time ¢ intersect x = B =1 at time 7 =t — 2 (w = 1 in this case). Since u
equals zero in the rest case, the boundary condition (3.12)) is of course satisfied.

3.3.3 Boundary Value Problem (BVP)

Li and Raichlen| [2001] and [Synolakis [1987] combine linear and nonlinear theory
to reduce the difficulties in the assignment of the boundary data for solving the
BVP problem in the NSWE. Later, it is shown that the proper way to solve the
assignment problem without using linear theory at all is not given in terms of
n or u (Antuono and Brocchini, [2007), but in terms of the incoming Riemann
variable a. This article follows the approach of |Antuono and Brocchini [2010],
who use this incoming Riemann variable as boundary data and solve the dimen-
sionless NSWE by direct use of physical variables instead of using the hodograph
transformation introduced by |Carrier and Greenspan| [1958]. We do, however,
clarify the mathematics of the boundary condition at the shoreline.

Given the data of  and u at the seaward boundary x = B, for all time t, we
want to find a solution of the NSWE in the sloping region to the shoreline, includ-
ing the reflected waves traveling back into the deeper waters. If the sea is assumed
in the rest state during the initial condition, the data are n(B,t)=u(B,t)=0 for
t < 0. In accordance to the previous trivial case, the initial time where a char-
acteristic meets © = B is labeled as 7, and we write x = x(¢,7), so we have the
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data a = ag = 2¢(B, 7) — u(B, T) + g7 along the incoming characteristic curves
and 8 = By = 2¢(B,T) + u(B,7) — g7 along the outgoing characteristic curves.
We can then rewrite Eq. (3.21)) as

-3
a = ag on curves such that yy =u—c= % + gyt (3.29a)
384 —
B = By on curves such that xy; =u-+c= 504 a + gnt, (3.29b)
which means that the boundary values are carried by the incoming and outgoing
characteristic curves. To be concise, we write y; = Oyx and x, = d;x. Our aim

is to obtain a closed equation for the dynamics, and we focus on the incoming
characteristic by fixing o = ap. We can rewrite Eq. (3.29a]) as follows:

B = 3ap +4(xt — g7t). (3.30)

Here, 8 = (B(x,t), since we are moving along an incoming characteristic curve.
By taking the total ¢ derivative of 3, we obtain
dg (6 -3

«a
T Bt + Bext = Bt + TO + Q’Yt) Bz = 4(xet — 97) , (3.31)

in which the last equality comes from Eq. (3.30). In addition, the 7-derivative of
Eq. (3:30) gives
0 . 3 + 4xer
875 = ﬁxX‘r =3qp +4xir = Bm = 07)6’
T Xt

in which &y = 0-ap. We still need an explicit expression for £, which can be
obtained by rewriting Eq. (3.21b|) in the following way:

(3.32)

ot (7w e =0, (3.33)

Combining Egs. (3.31)—(3.33)), we get the following differential equation for

the incoming characteristic curves:

2x7(xu — 97) = (4xer +3do) (97t — a0 — x¢) for t>7 (3.34a)

with boundary conditions
X|t=7’ =B (3'34b)
XT|T=TS =0. (334C)

The second boundary condition is the shoreline boundary condition. We have
4c = a+ B from Eq. , which implies = —« at the shoreline ¢ = 0. Using
Eq. (3.30), we note that 4c = ag + 8 = 4(ap + x¢ — g7t) = 0 at the shoreline.
Hence, the right-hand side of Eq. is zero, such that for consistency x,
must be zero at the shoreline, since generally, i # g7.
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Perturbation expansion

Due to the nonlinearity in y, we use a perturbation method to solve Eq. .
We expand it in a perturbation series around the rest solution , with the
assumption of small data at = B. Using the linearity ratio e = A/hgy (A is the
wave amplitude), we say a wave is small if € < 1, and expand as follows:

Qo =qp,0 1+ €ap,1 + 0(62), (3.35&)

X =X + ex® + O(e?), (3.35b)

7o =70(t) + ey (t) + O(e?), (3.35¢)

in which ago = 2¢o + gy7 is the incoming Riemann invariant in case of no

motion, (¥ is given by Eq. 1} and 79 = t — 2w. By substituting Eq. |)
into Eq. (3.34), we obtain at first order in e:

2w —t+ 1) () + 26 = (W = 1Y — agy)

3
—1—5 2w —t+7) a1 =0, (3.36a)
X2, =0, (3.36b)
X9 (t,70) 71 + xI (¢, 7o) =0. (3.36¢)

By letting T equal x™) — (2w — ¢ + 7). 1/2, we can rewrite Eq. (3.36a]) as
Quw—t+7) (WP rory _r® L y® — . (3.37)

We then make the change of variables v = —(2w—t+7) and £ = 7, and Eq. (3.37))
becomes

M) 1) ()
v <2TV§ - Tf,,)) —21® 4 = 0. (3.38)

Denoting the Fourier transform F(-) with respect to &,

[e.e]

p0ns) = F (100 8) )= [ Y@oe™ae, (39
we obtain from Eq. (3.38]) a differential equation related to a Bessel equation:
v (2ispl(,1) — p(VlV)> — 2o +ispV) =0, (3.40)

which has the general solution

pD(v, 5) = i (Al(s) [o(sv) — iy (sv)] + As(s) [iYo(sv) + Yl(su)]> (3.41)



3.3 Nonlinear Shallow Water Equations 61

with Jp 1 and Y1 the Bessel functions of the first and second kinds. To recover
Y (v,§), we just need to take the inverse Fourier transform of Eq. (3.41)), and by

using Y = x() + vag 1 /2, we get

w6 = o [ e (4(5) olor) — i ()]

2m J_
FAo(s) [iYo(sv) + Yl(sz/)])ds - gaoJ (3.42)

with £ =7 < t.

Boundary value assignment

In order to calculate the unknown functions A;(s) and As(s), we need to assign
the boundary conditions (3.34). In (v, &) space, t = 7 corresponds to v = —2w,
and by imposing the first boundary condition, we get

—F (ap1) we?™ =A;(s) [Jo (25w) 4 iJy (25w)] + Aa(s) [V (25w) — Y7 (25w)] -

(3.43)
The second boundary condition is given by Eq. (3.36¢)), in which
A == xD 44
I z‘s(l/+£)< [ . 3 Jl(SV)}
o | e Aq(s)|sJo(sv) —isdi(sv) ”

. Yi(sv) ap1 Va1
+ As(s) [zSYO(sy) + sYq(sv) + - Dds + 5 5 (3.44)

is evaluated at 7 = 7p; i.e., ¥ = 0 needs to be finite. Evaluating Eq. at
v = 0 gives us convergence when the coefficient As(s) is zero, which avoids an
unbounded result. Hence, from the first boundary condition , coefficient
Aq(s) is given by

Flap1)we?sw
 Jo(25w) + i1 (25w)

Ai(s) = (3.45)

The solution of incoming characteristic curves at first order is thus given by

1 [, Jo(sv) —iJ1(sv) v
¢9) _ is(v+€+2w) 0 1 ds — 2
X 8) 27 J_oo ° wF (a0.) Jo(2sw) + iJ1(2sw) ST et

(3.46)

The shoreline position must satisfy x;|;=-. = 0, and in the first-order approx-
imation, it is given by

25(t) = X0 (t.70) + € X (1 70) 7+ XD (8, 70)] + O (D) (3.47)
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Since T = 19 corresponds to ¥ = 0 and &£ =t — 2w, we get

w
Jo (2sw) +iJ1 (25w)

zs(t) = =F | F (a0,1) (3.48)

3.4 Effective Boundary Condition

3.4.1 Finite element implementation

The region x € [B, L] will be approximated using a classical Galerkin finite
element expansion. We use first-order spline polynomials on N elements with j =
1,..., N +1 nodes. The variational structure is simply preserved by substituting
the expansions

(1) = ¢j(t)pj(x),  Unlz,t) = ¥i(D)p;(w), and in(z,t) = n;(t)p;(x)
(3.49a)

into Eq. (3.6) for x € [B, L] concerning N elements and (N + 1) basis functions
@;. We used the Einstein summation convention for repeated indices.

To ensure continuity and a unique determination, we employ Eq. (3.13) and
substitute

P(,1) =$(w7t)+¢1(t)901($)+}iwl(t)w(x) and n(z,t) = 7z, t) +mt)ei(x)
(3.49b)

with ¢; the basis function in element 0 for = € [z, B], and with ¢(B,t) =
7(B,t) = 0. For linear polynomials, the use of Eq. (3.49) in Eq. (3.6)) yields

T
. 1 1 1 1
0 25/ [Mk1¢>k771 - ingmkﬂl - §Sk1¢k¢>l — Butrgr — §Ak11/1k¢l - §Gk1¢k¢z
0

B
1, 1 )
—&-/m (¢6t77 — 590 - §h (020) )dm} dt (3.50a)
T .
= Mkmz Sk —Biat1)ddr — (Mg dr+gMiank ) om— (A +Biadr + Gia) 5y,
0
B 1o, oo das
+ [ (O + 000,036 — @16 + g + 5080)97) i+ (90) e, G (600) |z,
B 1
+/ a15774' 0 (h0,9)) 1601 — (0rd + gn + 5@%‘1’)@15771)(1%

— 102 6lu=p001 — 20,8l
(3.50b)
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where we introduced the mass and stiffness matrices My, Sy, Ay, By, and
Gy, and used endpoint conditions dn;(0) = dnk(T) = 0, connection conditions
67(B,t) = d¢(B,t) = dp(B,t) = 0, and no-normal through-flow conditions at
x = L. The matrices in Eq. are defined as follows:

L L L
Mkl —/ ngQDld.’L', Skl —/ h@xgokaxgozdx, Akl _/ Cvkamcpkam()oldxa
B B B
L L
By = / BOrpr0rpidr, and Gy = / Yeorpidr. (3.51)
B B

Provided we let the size of the zeroth element go to zero such that the underlined
terms in Eq. (3.50b|) vanish, the equations arising from Eq. (3.50) are

Mian — Su¢r — Bty — 0g1 (h029) [;=p- =0 (3.52a)

Mk + gMiani = 0 (3.52D)

Axr + Buagr + Gty — 5k1(}ihaz¢)|x:B— =0 (3.52¢)

with Kronecker delta symbol dy; (one when k& = [, and zero otherwise) and

Eq. for x € [zg, B] with boundary condition . Taking this limit
does not jeopardize the time step, as this zeroth element lies in the continuum
region, in which the resolution is infinite. The time integration is solved using
ode45 in MATLAB, which uses its internal time step.

From Eq. , we note that we need the depth h and the velocity u from
the nonlinear model at x = B, whose values are given at time ¢t = 7 in the char-

acteristic space. The definitions (3.22)), while using a = ag and S in Eq. (3.30)
with expansions up to first order, yield

1
h=c*/g = {55 (@0 + B’
(0)

2
= (w0 +x: —gvt+e(ao + Xgl))) /9

t—«
— (040,0 4 Q’Y#0,0 — gyt + 6(040,1 + X1(§1)>)2/g
_ 1 (1)) 2
= (co+ 59’7(7' —t)+ el +x¢7)) /9 (3.53a)
1
=gyt + 5 (8~ ao) = e(aos +2x;"). (3.53b)

Note that for € = 0, we indeed find the rest depth hy,(z) = yz. The function Xgl)
follows from evaluation of Eq. (3.46]), and since ¢ = 7 is equivalent to v = —2w,
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we immediately obtain

X ier = X (—2w,€)
7

0o 92
__v G F (ap.) Ji (2sw) _ Q01

.54
Ar J_ o Jo (2sw) +iJ1 (25w) ° 2 (3:54)
The solutions of h and u at ¢ = 7 are thus given as follows:
2
g €0 Jo (2sw)
=0 Vr-1|F 3.55
g e g [ (201) Jo (2s5w) + iJ1(25w) (3:55)
W(B.t) = —F 1 | F(agy) ——T1259) (3.55D)
e OV Jo (25w) + i1 (25w) '

In order to calculate the solutions for h and « at x = B and the shoreline
position, we need the data of incoming Riemann invariants at the first order as
follows:

€Qp,1 ~ o — @0,0
=2 (Vo B+1) = Vo1 B) lamps — tilips (3.56)

which is obtained by disregarding higher-order terms in Eq. . This expres-
sion is actually the incoming Riemann invariant in LSWE [Kristina et al., |2012].
By imposing the effective boundary condition (EBC) and choosing the location
x = B before the nonlinearity arises, we thus do actually solve for the perturba-
tion expansion in the nonlinear area, but we do not perturb the incoming wave
data.

The values 7 and @ in Eq. are obtained from the simulation area [B, L].
In this region, we only have the values of 7, (57 and 1Z The depth-averaged
velocity u(B™,t) is determined by using the approximation as follows:

v

p

20,0 at x =B, (3.57)
hy

which is the limit from the right at node 1.
The solutions of n = h—hy, and u in Eq. (3.55)) account for the reflected wave,
so we may define

n=n"+n% and u=1u'+ut, (3.58)

where n' and n® are the wave elevations of incoming and reflected waves, respec-
tively, at x = B. This superposition is also described in |Antuono and Brocchini
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(2007, [2010), and is actually in line with our EBC concept, since linearity holds
in the simulation area. To obtain the expression for the reflected wave, we need
to know the incoming one. Using the knowledge of incoming and outgoing Rie-
mann invariants in the LSWE as derived in |[Kristina et al.| [2012], the observation
operator is given by

O = hii + cij = 2en, (3.59)

which is calculated using approximation . We can thus calculate the in-
coming wave elevation for any given wave signal at x = B. Implementation of
this observation operator allows us to have any initial waveform at the point of
tsunami generation, and to let it travel over the real bathymetry to the seaward
boundary point x = B. From Eq. , the expressions for the reflected wave
are as follows:

_ - Jo (2s5w)
= M(n") = g]: ! []—'(eao,l)JO (Z5w) + i (QSW)} - (3.60a)

iJ1 (25w)
Jo (25w) + iy (28(,0)] -, (3.60b)

ult = M(uI) = _—F 1 [}"(6010,1)

where the Fourier transform and its inverse for any incoming wave signal are
evaluated using the FFT and IFFT functions in MATLAB.

The influxing operator is defined as the coupling condition in Eq. to
send NSWE result to the simulation area. It is shown that we need the value of
hd,¢, and hence

Z = hdy¢ = (hp + n)u. (3.61)

In order to verify the EBC implementation, we perform numerical simulations
with a code that couples the LSWE in the simulation area to the NSWE in the
model area [Bokhove| [2005, Klaver, 2009]. For the numerical simulation of the
LSWE, we use a finite element method, while for the NSWE, we use a finite
volume method. The implementation of the finite volume method is explained in

Appendix

3.5 Study Case

Three test cases are considered. The first one is a synthetic one concerning a
solitary wave, such that we can compare it with other results. Subsequently,
we consider periodic wave influx as the second case to test the robustness of the
technique when there is continuous interaction between the incoming and reflected
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waves. The third case is a more realistic one concerning tsunami propagation and
run-up based on a simplified bathymetry at the Aceh coastline.

The location of the EBC point is determined from the linearity condition
e = Ap/hp < 1. From linear theory, the wave amplification over depth is given
by the ratio Ay = A</h/hg, where A and h are the initial wave amplitude and
depth. Hence, the EBC point must be located at a depth

ho > v/ A*h/et. (3.62)

Since a dispersive model is also used in the simulation area, we will discuss
the dispersion effect at this EBC point as well. The non-dispersive condition
is given by u? = (k0h0)2 < 1, where kg = 27 /) is the wavenumber and \ is
the wavelength. In linear wave theory, the wavelength decreases with the square
root of the depth when running in shallower water, that is A\g = Ay/ho/h. Using
this relation, we can thus investigate the significance of the dispersion given the
information of the initial condition and bathymetry profile.

3.5.1 Solitary wave

The run-up of a solitary wave is studied by means of the well-known case of
Synolakis| [1987]. A solitary wave centered at x = xy at ¢ = 0 has the following
surface profile:

n(x,0) = A sech’k(z — xq). (3.63)

We benchmark the EBC implementation and the coupling of numerical solu-
tions to experimental data of [Synolakis [1987] provided at the NOAA Center
for Tsunami Research (http://nctr.pmel.noaa.gov/benchmark/). Solitary wave
run-up over a canonical bathymetry is considered with the scaled amplitude
A = 0.0185 and x = /3A/4 = 0.1178. The initial condition is centered at
xg = 37.35 over the bathymetry, with a constant slope v = 1/19.85 for x < 19.85.
The EBC point is located at x = 10, such that the domain is divided into the
model area for x € [—5,10] and the simulation area for x € [10,80]. The spatial
grid sizes are Ax = 0.25 in the simulation area and Ax = 0.0125 in the model
area for the numerical solution of NSWE. In all cases, several spatial resolutions
have been applied to verify numerical convergence. For the time integration, we
use the fourth-order ode45 solver that estimates its own time step in MATLAB.

The simulations with the EBC implementation and the coupling of the nu-
merical solutions are only presented for the LSWE model in the simulation area
since the initial condition has a long wavelength, and thus dispersion effects will
not appear. Figure|3.3[shows the time evolution of this profile for the scaled time
t = 30 — 70 with 10 increments. It can be seen that the EBC implementation
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Figure 3.3: Run-up of a solitary wave over a canonical bathymetry at times (a) t =
30, (b) t = 40, (c¢) t = 50, (d) t = 60, (e) t = 70. The solid line is LSWE with
EBC implementation at x = 10, the dashed and dotted-dashed lines are the couplings of
the LSWE and NSWE models respectively, and the symbols are the laboratory data of
Synolakis| [1987).
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T 20 40 60 80 100

Figure 3.4: The shoreline movement of a solitary wave introduced in|Synolakis [1987)].
The LSWE model coupled to the NSWE is shown by the dashed line, while the solid one
is the shoreline movement of the LSWE model with an EBC implementation.

and the coupling of numerical solutions agree well with the laboratory data. The
comparison of the shoreline movement between the simulation with the EBC im-
plementation and the coupling of numerical solutions is shown in Fig. For
the simulation till the scaled physical time ¢ = 100, the computational time for
the coupled numerical solutions in both domains is 10.9s, while the computa-
tional time of the simulation with the EBC implementation only takes about
18 % of that time. Hence, we notice that the simulation with the EBC reduces
the computational time significantly, up to approximately 82 %, compared with
the computational time in the whole domain.

In order to show the dispersion effect, we consider a shorter wave with the
profile given in Eq. for kK = 0.04, zp = 150m, and A = 0.1m. The
bathymetry is given by a constant depth of 10m for z > 50 m, continued by a
constant slope v = 1/5 towards the shore. A uniform spatial grid Az = 1m is
used in the simulation area, and Az equals 0.015m in the model area for the
numerical solution of the NSWE. Evaluating Eq. for e = 0.02 < 1, the
EBC point must be located at hg > 3.3m. Accordingly, we choose this seaward
boundary point at hg = 10m at the toe of the slope, that is at x = B = 50m.
We therefore divide the domain into the simulation area for x € [50,250] m, and
the model area for x € [—5,50] m.

In Fig. 3.5 we can see the initial profile of the solitary wave. The dashed and
dotted-dashed lines represent the coupling of the linear model (LSWE or LVBM)
with the NSWE, respectively, and the solid one represents the linear model with
an EBC implementation. The thick solid line is the sloping bathymetry. Compar-
isons between these two simulations at several time steps can be seen in Fig. |3.6
(left: LSWE; right: LVBM). Comparing the left and right figures, we can see that
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Figure 3.5: A solitary wave initial condition for the NSWE (dotted-dashed line) coupled
to the linear model (dashed line), and the linear model with the EBC implementation
(solid line) at x = 50m. The solid and dashed lines are on top of one another.

the wave is slightly dispersed in the LVBM. Because we have a flat bathymetry
in this case, the dispersion ratio in the simulation area is constant and given by
p? =0.39 < 1. Hence, it is shown that the long waves propagate faster than the
shorter ones in LVBM simulations. In Fig. the shoreline movement caused
by this solitary wave is shown with the dashed line for the coupled numerical
simulation, and the solid one for linear model with an EBC implementation. The
paths of characteristic curves forming the shoreline are also shown in this figure.
We can see that the shoreline is formed by the envelope of the characteristic
curves. The result with the LVBM shows a lower run-up but a higher run-down,
with some oscillations at later times.

For a simulation till physical time ¢ = 40s, the computational time for the
coupled numerical solutions in both domains is 3.3 times the physical time for the
LSWE and 2.2 times the physical time for the LVBM, while the computational
time of the simulation using an EBC only takes 0.12 times the physical time
for the LSWE and 0.06 times that for the LVBM. Hence, we notice that the
simulation with the EBC reduces the computational time significantly, up to
approximately 97 %, compared with the computational time for the numerical
models in the entire domain. The computational time for the LSWE with an
EBC is slower than the one with LVBM and an EBC, because the internal time
step of the oded5 time step routine in MATLAB required a smaller time step At
(compared to the LVBM) to preserve stability.

The shoreline movement of our result compares well with the one of |(Choi et al.
[2011]. We can see the comparison in Fig. The solution of |Choi et al.| [2011]
gives a higher prediction for the shoreline, but it cannot follow the subsequent
small positive wave. It may be caused by neglecting the reflection wave and
nonlinear effects in their formulation. We also compare the free-surface profile
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Figure 3.6: Free-surface profiles of solitary wave propagation are shown for the coupled
linear model (left: LSWE; right: LVBM) with the NSWE (dashed and dotted-dashed
lines), and for the linear model with an EBC implementation (solid line), at times (a)t =
10s, (b) t=20s, (c)t =30s, and (d) t = 40s. The solid and dashed lines are on top
of one another.
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Figure 3.7: The shoreline movement of a solitary wave for the linear model (a: LSWE;
b: LVBM) coupled to the NSWE (dashed line), and the linear model with an EBC im-
plementation (solid line). Paths of the first-order characteristic curves are shown by the
thin lines.
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for several time steps in Fig. The implementation of the hard-wall boundary
condition at x = B in the method of |Choi et al|[2011] causes inaccuracies in the
prediction of the point-wise wave height in the entire domain. In this case, the
effect of reflected waves for shoreline movement prediction is small, but it may
become important when a compound of waves arrives at the coastline.

x (1) [m]

t[s]

Figure 3.8: Comparison of the shoreline movement of |(Choi et al| [2011)] (dashed line)
and the LSWE with an EBC simulation (solid line) for the solitary wave case.
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Figure 3.9: Free-surface profiles of solitary wave propagation are shown for the coupled
LSWE with the NSWE (dashed and dotted-dashed lines), for the LSWE with an EBC
implementation (solid line), and for the LSWE with Choi’s method (solid line with the
‘o’ marker) at times (a) t =10s, (b) t =20s, (¢) t =30s, and (d) t =40s. The solid
and dashed lines are on top of one another.

3.5.2 Periodic wave

Using the same bathymetry profile as in the previous case, we influx a periodic
wave at the right boundary (z = L) with the profile

n(L,t) = A sin (2nt/T) (3.64)
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in which A = 0.05m is the amplitude and 7" = 20s is the period. A smoothened
characteristic function until £ = 10s is used in influxing this periodic wave. We
use a uniform spatial grid Az = 1 m in the simulation area and Az = 0.015m in
the model area for the numerical solution of the NSWE.
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Figure 3.10: Free-surface profiles of periodic waves are shown for the coupled linear
model (left: LSWE; right: LVBM) with the NSWE (dashed and dotted-dashed lines), and
for the linear model with an EBC implementation (solid line), at times (a) t = 20s,
(b)t=40s, (¢) t =60s, and (d) t = 755s. The solid and dashed lines are on top of one
another in several plots.

As in the previous case, we also choose the seaward boundary point at hg =
10m at the toe of the slope, that is, at + = B = 50m. The simulation area is
thus for x € [50,250] m and the model area is for z € [—5,50] m. Comparisons
between these two simulations at several time steps can be seen in Fig.
(left: LSWE; right: LVBM). We can see in the comparison that the wave is
slightly dispersed in the LVBM. The dispersion ratio in the simulation area is
given by u? = 0.0986 < 1, which is less dispersive than the previous case. In
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Figure 3.11: The shoreline movement of periodic waves for the linear model (a: LSWE;
b: LVBM) coupled to the NSWE (dashed line), and for the linear model with an EBC
implementation (solid line). Paths of the first-order characteristic curves are shown by
the thin lines.

Fig. the shoreline movement caused by the periodic wave as well as the
paths of characteristic curves forming the shoreline are shown. Observing the
results of this case, we can conclude that the EBC technique can deal robustly
with consecutive interactions between incoming and reflected waves.

For a simulation till the physical time t = 80s, the computational time for the
coupled numerical solutions in both domains is 1.83 times the physical time for the
LSWE, and 2.01 times the physical time for the LVBM, while the computational
time of the simulation using an EBC only takes 0.07 times the physical time
of the LSWE and 0.06 times that of the LVBM. Obviously, we notice that the
simulation with the EBC reduces the computational time up to approximately
97 %, compared with the computational time for whole domain simulation.

As mentioned in the Introduction, a resonant phenomena were investigated by
Stefanakis et al.|[2011] for monochromatic waves on a plane beach. Subsequently,
Ezersky et al. [2013] used three piece-wise linear profiles of unperturbed depths
(see Fig. , akin to a real coastal bottom topography, to find the analytical
run-up amplification due to resonance effects. We follow this bathymetry profile,
with tan « = 0.0036, tan 8 = 0.0414, hg = 2500m, and h; = 200m. These choices
roughly characterize the Indian coast bathymetry [Neetu et al., [2011]. The EBC
point is located at the edge of the last beach slope. We influx a periodic wave
(3.64]) with amplitude A = 1m and w = 27 /T = 0.0009rad/s. As a result, we get
10.67 times amplification, as shown in the run-up height R(t) in Fig. while
the result of |[Ezersky et al.|[2013] gives about 12 times amplification. It should
be noted that they use a linear approximation to calculate the amplification of
periodic waves. In our results, the NSWE model is employed in the last beach
slope region. The period of this wave is approximately 2 h, and it coincides
with the observed tsunami at the Makran coast, according to Neetu et al.| [2011].
In nature, one would not expect a tsunami of a monochromatic wave train. The
investigation of |Stefanakis et al. [2011] for the October 25, 2010 Mentawai Islands
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tsunami showed that the period of the dominant mode of the incident wave is
within the resonant regime, and it explained the fact that the highest run-up is
not driven by the leading and highest waves.

Figure 3.12: The three piece-wise linear bathymetry profiles.
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Figure 3.13: The run-up height of periodic waves with initial amplitude A = 1m and
frequency w = 0.0009rad/s. The solid line is the run-up height calculated by employing
the LSWE model in the simulation area with the EBC implementation. The dashed one
is the result of coupling the NSWE model in the model area to the LSWE model in the
simulation area.

3.5.3 Simulation using simplified Aceh bathymetry

The bathymetry near Aceh, Indonesia, is displayed in Fig. Figure (3.145
concerns bathymetry data from GEBCO (General Bathymetric Chart of the
Oceans), with a zero value on land. Figure concerns the cross-section
at (95.0278° E, 3.2335° N)—(96.6583° E, 3.6959° N) shown by the solid line. The
2004 Indian Ocean tsunami was a result of an earthquake of magnitude of Mw 9.1
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at the epicenter point (95.854° E, 3.316° N), shown by the symbol in Figure|3.14h.
Presently, we consider the following initial N-wave profile

1(w,0) = AF(@)/S with f(x) = = exp (~(o = 20)?/u0?)

and S = max (f(z)), (3.65)

and where the initial velocity potential is zero. We take A = 0.4m, the position
of the wave profile zg = 107.4km, and a width wy = 35 km.
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Figure 3.14: Bathymetry near Aceh (a) and the cross-section (b) at (95.0278° E,
3.2335° N)—(96.6583° E, 3.6959° N). The solid line concerns the bathymetry data, and
the dashed line concerns the approximation used in the simulations.

The location of the EBC point is also determined from Eq. . For e =
0.02 < 1, the linear model is valid for hg > 25.1 m. Hence, we choose the EBC
point at depth hg = 41.4m, which is located at x = B = 12.4km. The simulation
area is thus for z € [12.4,162.4] km, where we follow the real bathymetry of
Aceh to calculate the wave propagation. It is coupled to the model area for
x € [—8.6,12.4] km, where a uniform slope with gradient v = 1/300 is used
to calculate the reflection and shoreline position. We use a non-uniform grid
according to the depth, with ratio \/ho/h as the decrease in the wavelength when
traveling from a deep region with depth h and a shallower region with depth hg
in linear wave theory. The grid size used in the simulation area is Az = 305m at
the shallowest point near x = B. This choice of spatial resolution is fairly close
to other numerical tsunami simulations (Horrillo et al.l 2006 use Az = 100 m
offshore and Az = 10m onshore in one-dimensional (1D) simulations). For the
numerical solution of the NSWE in the model area, a uniform grid with Az = 3m
is used.

In Fig. [3.15] we show the initial profile. Comparisons between these two
simulations at several time steps can be seen in Fig. .16 In this case, the
wave elevation measured at B has changed from its initial condition due to the
reflection from the bathymetry before entering the model area; see Fig. [3.16p
and b. We hardly see any differences between the LSWE and LVBM simulations
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Figure 3.15: The initial condition for the Aceh case is shown for the linear model
coupled to the NSWE (dashed and dotted-dashed lines) an for the linear model with an
EBC implementation (solid line). The solid and dashed lines are on top of one another.

because the wavelength is much greater than the depth. The dispersion ratio
at the initial condition is given by p? = 0.002 < 1, and at the EBC point, it
is approximately p? = 7.5 x 107® <« 1. The dispersion effect is therefore not
significant in this case. In Fig. the shoreline position is shown with the
dashed line for the coupled numerical simulation, and the solid one for the linear
model with the EBC implementation. Paths of the characteristic curves are also
shown in this figure. From this plot, it is shown that the wave runs up 1km
in the horizontal direction in approximately 10 min, roughly in the time interval
from 50 to 60 min. For the given slope, it corresponds to a 3.3 m run-up height.

For the simulation till the physical time ¢ = 120 min, the computational time
for the coupled numerical solutions in both domains is 0.03 times the physical
time for the LSWE and 0.03 times the physical time for the LVBM, while the
computational time of the simulation using an EBC only takes 0.003 times the
physical time for the LSWE and 0.004 times that for the LVBM. We again no-
tice that the simulations using the EBC reduce the computational times up to
approximately 92 % of the computational times with the coupled model in the
entire domain. In this case, the simulation with the LSWE is faster, as expected,
since the LVBM involves more calculations within the same time step.

For the case when breaking occurs, we use the same profile, with an amplitude
twice as high (A = 0.8m). In Fig. the shoreline position is presented.
Compared to the numerical NSWE solution, it can be seen that the shoreline
movement is well represented by the characteristic curves, while the shoreline
position xs(t) given by Eq. gives a less accurate result. Breaking occurs
when two incoming characteristic curves intersect before reaching the shoreline.
As can be seen in the right figure, the first breaking takes place at approximately
t = 45min. The corresponding free-surface profiles at several times before and
after the breaking are shown in Fig. [3.19
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Figure 3.16: Free-surface profiles of Aceh simulations with the linear model (left:
LSWE; right: LVBM) coupled to the NSWE are shown by the dashed and dotted-dashed
lines, and for simulations of a linear model with an EBC implementation, are shown by
the solid line at times (a) t =800s, (b) 1600s, (c) 2700s, (d) 3200s, (e) 4000s, and
(f) 5400s. The solid and dashed lines are on top of one another.
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Figure 3.17: Shoreline movement in the Aceh case for the linear model (a: LSWE; b:
LVBM) coupled to NSWE (dashed line), and for the linear model with an EBC imple-

mentation (solid line). Paths of the first-order characteristic curves are shown by thin
lines.
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Figure 3.18: Shoreline movement (a) and an inset (b) of a breaking wave simulation.
The linear model coupled to NSWE is shown by the dashed line, while the solid one is
the shoreline movement of a linear model simulation with EBC implementation. Paths
of the first-order characteristic curves are shown by thin lines. Breaking occurs when two
incoming characteristic curves intersect before reaching the shoreline. It is indicated by
the red oval at approzximately t = 45min.
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Figure 3.19: Free-surface profiles of a breaking wave simulation for the linear model
coupled to the NSWE (dashed and dotted-dashed lines) and for the linear model with an

EBC implementation (solid line) at t = 40-70min. The solid and dashed lines are on
top of one another.
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3.6 Conclusions

We have formulated a so-called effective boundary condition (EBC), which is used
as an internal boundary condition within a domain divided into simulation and
model areas. The simulation area from the deep ocean up to a certain depth at a
seaward boundary point at x = B is solved numerically using the linear shallow
water equations (LSWE) or the linear variational Boussinesq model (LVBM).
The nonlinear shallow water equations (NSWE) are solved analytically in the
model area from this boundary point towards the coastline over linearly sloping
bathymetry. The wave elevation at the seaward boundary point is decomposed
into the incoming signal and the reflected one, as described in [Antuono and
Brocchini (2007}, [2010). The advantages of using this EBC are the ability to
measure the incoming wave signal at the boundary point x = B for various shapes
of incoming waves, and thereafter to calculate the wave run-up and reflection from
these measured data. To solve the tsunami wave run-up in the nearshore area
analytically, we employ the asymptotic technique for solving the NSWE over
sloping bathymetry derived by Antuono and Brocchini [2010], applied to any
given wave signal at © = B.

The EBC implementation has been verified in several test cases by comparing
simulations in the whole domain (using numerical solutions of the LSWE/ LVBM
in the simulation area coupled to the NSWE in the model area) with ones using
the EBC. We have also validated our approach with the laboratory experiment
of |Synolakis| [1987] for the run-up of a solitary wave over a plane beach. The
location of the boundary point x = B is considered before the nonlinearity plays
an important role in the wave propagation. The comparisons between both sim-
ulations show that the EBC method gives a good prediction of the wave run-up
as well as the wave reflection, based only on the information of the wave signal
at this seaward boundary point. It is also shown that the EBC technique can
capture the resonance effect that occurs due to the incoming and reflected wave
interactions. The computational times needed for simulations using the EBC
implementation show a large reduction compared to times required for the cor-
responding full numerical simulations. Hence, without losing the accuracy of the
results, we could compress the time needed to simulate wave dynamics in the
nearshore area.

An extension of this EBC technique to the case where the NSWE model is used
both in the simulation and the model areas follows directly from the variational
methodology. The analytical benchmark for this case is provided by |Carrier
et al| [2003] and Kanoglu [2004]. The two-dimensional (2D) extension of this
technique can be formulated asymptotically using an approach by Ryrie [1983].
For waves incident at a small angle to the beach normal, the onshore problem
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can be calculated using the analytical 1D run-up theory of the nonlinear model,
and independently, the longshore velocity can be computed asymptotically. By
using a 2D linear model in the open sea towards the seaward boundary line (i.e.,
in the simulation area), and by employing this approach in the model area, we
can in principle apply the EBC method for this 2D case as well. This will be
approximately valid for 2D flow with slow variations along the EBC line. The
EBC formulation for the case when the shoreline is fronted by a vertical wall
as presented by Kanoglu and Synolakis [1998] can be obtained by requiring the
normal velocity at the shoreline wall boundary to be zero. Another characteristic
of the outgoing or reflected waves must be derived (either for the LSWE model
or the NSWE model), but the coupling between the numerical and analytical
models remains the same as that derived in this article.

Appendix 3.A: Finite volume implementation

The conservative form of NSWE is given by

@ n Of (u)
ot ox

() w- (M) e

and the topographic term

=s (3.66)

with

s = < —9h (;ﬂ’/dm ) . (3.68)

The system ([3.66) is discretized using a Godunov finite volume scheme. First,
the domain [A, B] with some fixed A < x5(t) is partitioned into N grid cells, with
grid cell k occupying z;_1 < x < x;, 1. The Godunov finite volume scheme

2 2

is derived by defining a space-time mesh with elements z; 1 <z < z;,1 and
2 2
tn, <t < tpt1, and integrating Eqgs. (3.66) over this space-time element:

Ik 1 IEk 1
/ v u(x,tnﬂ)dx/ 2 u(z, t,)dr=
Ik,% mki%

tni1 tnt1 tni1 Tt
/ f(u(r, 1,1)dt— / £(u(ry, 1, t)dt+ / / s dedt.  (3.69)
tn tn tn x, 1
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In the grid cells, we define the mean cell average Uy, = Ug(t) as

Uilt) = / " e b, (3.70)

:h—
k wki%

with cell length hy = x, R PR The function Uy, is piecewise constant in
2
each cell. A numerical flux F is defined to approximate the flux f:

1 tn+1
F (UL U ~ 5 /t (g1 1)t (3.71)
By using Eqs. (3.70)—(3.71)), expression (3.69) then becomes
At

UZH :UZ - th (F ( Z: ZH) —-F ( ZflaUZ))
tn T
L +1/ 2 s dadt, (3.72)
h, Tyl

which is a forward Euler explicit method.

To ensure that the depth is non-negative and that the steady state of a fluid
at rest is preserved, the approach of |Audusse et al. [2004] is used. The numerical
flux F is then defined as

F(Up, Ugy) =Fpn (U’(‘H;),U’("‘Hlﬁ) (3.73)

2

where the interface values are given by

he 1y Ug
v _( (k+3) ) and

(k+3)- h(rr1)-
. (k1) 4 Uh+1
(k+3)+
The topographic term s is discretized as
tht1 T, 1 Lah2 — Lop2
/ / Y dedt ~ S = At ( 2 v B ) . (37m)
tn T, _1
2

with the water depths A/, 1y- and h,,, 1,4+ chosen as follows, to ensure the non-
(k+3) (k+35)

negativity of these depths:
By = max <hk b= by 0) :

By 1y+ = max (hk+1 by — bk+%,0> : (3.76)

(k4



3.6 Conclusions 83

and

b, .1 = max(by, byr1)- (3.77)

k+3

The discretization of the shallow water equations thus reads

At
n+l _ tm _ n n
R e
. . At
_Fk_%(U<k_%),,U(k_%)+)) oS (379)

The Harten-Lax-van Leer (HLL) flux [Harten et all [1983, Toro et al., |1994] is

used as the numerical flux. It is given by

Fy, if 0<SL
HLL _ ) SgrFL—SLFr+SLSrR(Ur—UL) .
Pl — § SPLSUP S Unth) g <0 < S (3.79)
Fr if 0> Sgr

The wave speeds S, and Si are approximated as the smallest and largest eigen-
values at the corresponding node. To ensure the stability of this explicit scheme,
a Courant—Friedrichs—Lewy (CFL) stability condition per cell is used for all eigen-
values A, at each U}:

At
\Ap )

<1. .
" < (3.80)

Appendix 3.B: Coupled model

The (continuous Galerkin) finite element implementation of LSWE or LVBM uses
linear polynomial for solving ¢, ¢, and n approximately, while the finite volume
implementation for NSWE approximates h and u with a constant value. Since
u = 0,¢, the velocity of the two models is approximated with the same order of
polynomials. By coupling both models, in the simulation area, we can rewrite

Eq. (3.52)) as

My — Sy — By — g1 (hu)|,—p- =0 (3.81a)
Miaor, + gMyni = 0 (3.81Db)
Ay + Bugr + Gy — 5k1(}ihu)|x:B— = 0. (3.81c)

In the finite volume implementation, the boundary condition is inserted through
the numerical flux at x = B by using the coupling condition (3.16)) as follows:

hu\ hy0ed+ PO
()= (ma )
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CHAPTER 4

Conclusions and Outlook

4.1 Conclusions

The effective boundary condition (EBC) for the nondispersive, linear, shallow
water equations (LSWE) and the dispersive, linear, variational Boussinesq model
(LVBM) has been formulated in this thesis. The EBC is designed as a (partially)
reflective, history-dependent internal boundary condition within a domain that
is divided into a simulation area and a model area. The wave propagation in
the simulation area is modeled numerically over a realistic bathymetry, while the
wave dynamics in the model area towards the shoreline and the reflection caused
by the bathymetry are modeled analytically. By implementing this technique,
fast forecasting of tsunamis can be done and the point-wise wave height in the
whole domain (offshore and onshore) area is predicted accurately.

The EBC formulation is started in Chapter [2] by employing the analytical
solution of linear shallow water equations in the model area. Flat bathymetry
with a closed wall boundary condition is considered as the simplest case. On
the one hand, the comparison of the EBC implementation for the LSWE with
numerical simulations in the whole domain shows exact agreement in both the
wave height and velocity profiles, as shown in Fig. On the other hand, the
EBC implementation for the LVBM gives the same wave velocity for the first
peak wave, while the rest of the waves reveal some differences relative to the
LSWE results. This result is expected since a non-dispersive analytical model is
used in the model area and only the phase speed of the most dominant wave in
the spectrum is chosen.
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Further, the case with slowly varying bathymetry is considered in the model
area. Accordingly, the analytical solution is based on the Wentzel-Kramer-
Brillouin (WKB) approximation, as well as extensions for the dispersive Bous-
sinesq model. Comparisons of the numerical performance of simulations in the
whole domain and simulations with the EBC implementation show competitive
results in several cases. The implementation of the EBC reduces the simulation
time up to 30% as shown in Table Meanwhile, comparisons of the LSWE
and LVBM show that dispersion effects play an important role in simulations of
tsunami propagation. As can be seen in Fig. the LVBM simulation yields
a higher peak wave elevation of about 1m. In more dispersive cases, successive
wave tails behind the main wave may enhance the tsunami oscillations through
resonance.

In Chapter 3| the analytical (asymptotic) solution of the nonlinear shallow
water equations (NSWE) is used in the model area for the EBC formulation. The
analytical run-up heights at the shore and the reflection caused by the slope are
calculated by approximating the bathymetry in the coastal region as a planar
beach. Verifications of the results are done by coupling the LSWE and LVBM in
the simulation area with a numerical solution of the NSWE in the model area.
Comparisons between simulations with the EBC implementation and numerical
simulations for the whole domain give a good agreement of the wave run-up
as well as the wave reflection. The simulation results also show that when a
tsunami wave is dispersive, the oscillations also appear in the shoreline movement
as shown in Fig. It is also displayed that using the EBC technique, we can
capture the resonance effect that occurs due to the incoming and reflected wave
interactions. The run-up amplification due to the resonance is strongly dependent
on the frequency of the incident wave and influenced by the bathymetry profile.
Fig. displays the run-up height of an incident wave with an amplitude of 1m
which amplifies up to 10.67m high. Furthermore, the computational times needed
in simulations using the EBC implementation show a large reduction up to 97%
compared to times required for corresponding full numerical simulations. The
expensive computational time of the full numerical solution is caused by the fine
mesh size required in the shore area to get an accurate result of the NSWE. As a
consequence, it limits the overall time step, although the mesh size used to solve
the LSWE and LVBM in the simulation area is similar to the one with an EBC
implementation. Hence, by applying the EBC, we could reduce the time needed
to simulate wave dynamics in the nearshore area without losing the accuracy of
the results.
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Figure 4.1: Illustration of a simulation of harbor waves.

4.2 Outlook

Suggestions for further research are as follows:

e The breaking effects in tsunami waves is ignored in the present analytical
solution of nonlinear shallow water equations. This can be improved by
incorporating a shock solution in the coastal zone (e.g. |Antuono| [2010,

2011)).

e The present EBC implementations are done in one horizontal dimension ap-
proach, using a model area as well as a simulation area. Integration of 2D
numerical modeling in the simulation area with a 1D analytical calculation
in the (horizontal) coastal area can be extended directly under certain limi-
tations, for example the negligence of 2D effects such as refraction, focusing,
etc. in the model area.

e Another recommendation for an extension in two horizontal dimensions
concerns waves incident at a small angle to the beach normal. Thus, the
onshore problem can be calculated using the analytical 1D run-up theory
of the nonlinear model, and independently the longshore velocity can be

computed asymptotically by using the approach of [1983]. By im-
plementing 2D numerical modeling in the open sea towards the seaward
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boundary line and employing this approach in the nearshore area, in prin-
ciple the EBC method for in two horizontal dimensions can be applied as
well. This will be approximately valid for horizontal flow with slow varia-
tions along the EBC line.

As mentioned before, the EBC is designed as a (partially) reflective and
history-dependent internal boundary condition. In general, the EBC can
be used for tsunami simulations, also for the simulation of wind waves from
the ocean and sea to include the reflection from the coastal boundaries
and coastal structures, such as harbors (O’Sullivan| [1992], Pinheiro et al.
[2009]), where there are permeable structures like breakwaters and harbor
boundaries as illustrated in Fig.
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